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ABSTRACT 
 
Observations of strong ground motions on soft sedimentary deposits are suggesting that dilatancy in cohesionless soils may give rise 
to a partial recovery of shear strength during intense shaking. This demonstrates that this phenomenon should be included in 
simulations of nonlinear soil response, and several constitutive soil models are available to model dilatancy.  These models can be 
calibrated with numerical tools that simulate the behavior of soil samples during shear experiments.  The soil parameters are typically 
adjusted by trial-and-error until the simulated response of the sample is consistent with measured laboratory data.  We propose to 
calibrate cyclic mobility models more efficiently by searching the parameter space with the neighborhood algorithm (NA) introduced 
by Sambridge (1999a).  We try to minimize the misfit between simulated and observed shear strain amplitudes and excess pore water 
pressure curves by inverting for the parameters p1, p2, w1 and c1, which describe soil dilatancy in the multi-shear model of Iai et al. 
(1990a).  First we test the feasibility of the method by applying the NA to a set of synthetic laboratory results, calculated with 
predefined values for the dilatancy parameters.  After tuning the sample sizes and adjusting the misfit function we find that the NA 
converges towards the true values of the dilatancy parameters within 50-100 iterations.  We then apply the same methodology to shear 
strain amplitude and excess pore water pressure curves measured in the laboratory, and determine the dilatancy parameters of samples 
from the Rhône valley in southern Switzerland. 
   

 
INTRODUCTION 
 
It is generally accepted within the seismological and engineering community that soft soils exhibit some degree of nonlinearity during 
strong ground motion.  However, direct observations of nonlinear soil behavior in strong motion records remain scarce and often 
controversial.  When both borehole and surface records of weak and strong ground motion are available, nonlinear damping in the soil 
should become evident through a lower degree of amplification and a lowered resonance frequency in the strong motion site response 
compared to the weak motion response (e.g. Beresnev & Wen, 1996).  In many cases, seismologists have explained such observations 
with effects other than soil nonlinearity. O’Connell (1999), for example, showed that apparent deamplification observed during the 
main shock of the 1994 Northridge earthquake may also be caused by random 3-D crustal velocity variations. 
 
Moreover, the nonlinear behavior of soils at large strains can give rise to phenomena other than deamplification.  During the 2008 Mw 
6.9 Iwate-Miyagi earthquake in Japan, the peak acceleration above the fault reached 3.8g in the upward direction, exceeding the 
maximum amplification expected for the site.  The vertical acceleration at this site was distinctly asymmetric, with more than twice 
the acceleration recorded in the upward direction than in the downward direction.  Aoi et al. (2008) explained these observations with 
a trampoline-like effect in loose soils, with the highest acceleration caused by rebound of particles following a quasi free-fall state.  
 
Another type of non-linear effect that may give rise to high-frequency amplification concerns water-saturated dilatant soils.  
Acceleration time series recorded in Kushiro Port during the 1993 Kushiro-oki earthquake (Mw 7.8) are characterized by spiky 
waveforms reaching 0.47g riding on a long-period carrier with a period of 1.5 seconds.  These spikes, which represent a peak ground 
acceleration of 0.47g, were not observed on the downhole record (GL 77 m) of the station, where the peak acceleration was only 
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0.21g.   Iai et al. (1995) successfully reproduced these spiky waveforms by modeling the response of the sand deposit with the strain 
space multi-shear mechanism model.  They explained the high-frequency spikes in the waveform with the cyclic mobility in the sand, 
which results in transient periods when the soil dilates and the pore water pressure decreases, making the soil temporarily behave 
linear.  Bonilla et al. (2005) implemented the strain space multi-shear mechanism model in a 1-D finite difference code and reached 
similar conclusions for the Wildlife refuge records of the 1987 Superstition Hills earthquake, which were characterized by spiky 
waveforms similar to the Kushiro Port accelerograms.  Additional observations of such characteristic waveforms include the Bonds 
Corner records of the 1979 Imperial Valley earthquake (e.g. Archuleta et al., 2000), the Takatori accelerogram of the 1995 Hyogen-
ken Nanbu earthquke (Kamae et al., 1998), two records of the 1994 Northridge earthquake (Bardet & Davis, 1996), and a three-station 
array that recorded the 2001 Nisqually earthquake (Frankel et al., 2002).   These observations strongly suggest that soil dilatancy 
causing cyclic mobility should be taken into account when modeling the nonlinear response of sand deposits. 
 
In regions of moderate to low seismicity, simulations often provide the only means to predict nonlinear soil behavior.  Such 
simulations are based on laboratory analysis of soil samples extracted from the site in question.  Codes that are capable of modeling 
dilatancy include DYNAFLOW (Prévost, 2010), SUMDES (Li et al., 1992) and NOAH (Bonilla, 2001).  While these packages use 
different constitutive soil models and a varying number of parameters, they are all calibrated from similar laboratory tests in mostly 
undrained conditions. Each of these programs is shipped with a helper tool, based on the same soil model as the wave propagation 
program, which simulates the behavior of a sample in the laboratory.  The model is typically calibrated by adjusting the parameters in 
a trial-and-error manner, until the predicted behavior of the sample matches the behavior observed in the laboratory.  Iai et al. (1992), 
for example, provide step-by-step instructions on how to calibrate the 10 parameters of the strain space multi-shear mechanism 
(SSMM) model from stress-controlled shear experiments.  Depending on the number of parameters, this process can be time-
consuming and tedious.  In this paper we propose to sample the parameter space with the Neighborhood Algorithm (Sambridge, 
1999a) to calibrate the soil model in an automated way.  The goal is to make the process more standardized and reproducible, and less 
dependent on the expert performing the calibration.  Maybe more importantly, the Neighborhood Algorithm allows exploring the non-
uniqueness of a given solution by providing an ensemble of models with similar misfits (Sambridge, 1999b). 
 

 
Fig. 1: Map of the Rhône valley.  Soil samples were taken in Visp. From Roten et al. (2009) 

 
We start with a short review of the SSMM model and discuss the parameters we are trying to invert as well as the measurement data 
that we seek to fit.  Then we test the feasibility of the NA algorithm to retrieve the model parameters by inverting a set of synthetic 
laboratory data.   Next we apply the NA to a measured dataset representing soil samples from the Rhône valley in Southern 
Switzerland (Fig. 1).  These samples were analyzed in a previous study (Roten et al., 2009) on nonlinear soil behavior and liquefaction 
in the Valais region, the area of highest seismicity in Switzerland. We compare the soil parameters reported in the previous study, 
obtained by trial and error, with the values found by the NA. 
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CYCLIC MOBILITY MODEL 
 
A comprehensive explanation of the SSMM model is beyond the scope of this paper.  In this section, we will just review the main 
concepts of the cyclic mobility model of Iai et al. (1990a,b) and introduce the parameters characterizing the soil dilatancy. 
 
Cyclic mobility observed in the laboratory can be represented by the stress path, which is a plot of shear stress τxy as a function of 
effective mean stress -σm’.  As the effective mean stress decreases due to pore pressure buildup, the stress path eventually runs over 
the phase transformation line, and repeats a certain closed path in the vicinity of the shear failure line.  In this state, the shear strain is 
growing gradually and may exceed 5%, a level of deformation that is considered to represent liquefaction. 
 
Towhata and Ishihara (1985) were the first to recognize that the pore pressure excess correlates with the cumulative shear work 
produced during cyclic loading. They introduced the concept of the liquefaction front, which is an empirical approach to model the 
decrease of effective mean stress due to the increase of pore pressure.  The liquefaction front is defined by a contour line that connects 
stress points representing equal cumulative shear work in a plot of effective confining stress vs. applied shear stress (Fig. 2 left).  The 
location of the liquefaction front is entirely controlled by the cumulative shear work, and it will move gradually from the initial 
envelope to the failure line during cyclic shear in undrained conditions.  

 
Fig. 2. Left: Envelope of stress points at equal shear work (from Towhata and Ishihara, 1985). Right: Schematic plot of the 

liquefaction front, state variable S and shear stress ratio r (from Iai et al., 1990a). 
 
 
Iai et al. (1990a,b) generalized the formulation of the liquefaction front by redefining it in normalized stress space (Fig. 2b) using the 
effective mean stress ratio   S = ʹ′σm / ʹ′σm0  and the deviatoric stress ratio   r = τ / (− ʹ′σm0 ) , where   
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The shape of the liquefaction front in normalized stress space is defined as 
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where r2 = m2 S0, r3 = m3 S0 and S2 = S0-(r2-r3 )m1.  The slopes m1, m2 and m3 depend on the shear resistance angle φ’f and the phase 
transformation angle φ’p: 
 m1 = sin ʹ′φ f , m2 = sin ʹ′φp and m3 = 0.67m2 . (3) 
 
The parameter S0 is called the liquefaction front parameter and serves as a measure to define the state of liquefaction. S0=1.0 
represents the initial stress state with r < r3, while S0=0 represents a limiting state where failure occurs due to liquefaction. Iai et al. 
(1990a) developed an empirical model that defines the liquefaction front parameter as a function of the cumulative shear work w: 
 

(a) (b) 
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S0 = 1− 0.6 (w / w1 )p1 (if w < w1 )
S0 = (0.4 − S1 ) (w1 / w)p2 + S1 (if w > w1 ).

 (4) 

 
The parameter w1 defines the contribution of normalized shear work over the entire zone of S0, while p1 controls the initial phase of 
dilatancy (S0 > 0.4) and p2 the final phase (S0 < 0.4).  These two values for p were introduced as certain laboratory studies indicate a 
“break” at S0=0.4 (Zienkiwicz et al., 1978).  The parameter S1, typically set to 0.005, is required for numerical stability and prevents S0 
from becoming zero. 
 
In addition to the four parameters w1, p1, p2 and S1, a fifth parameter is required, called the threshold limit c1.  This parameter comes 
from the observation that there is a certain limit in the amplitude of cyclic shear strain or shear stress for which no pore-water pressure 
build-up occurs (e.g. Dobry et al., 1982).  When the shear work increment dWs is calculated for the shear work correlation in eq. (4), 
the shear work computed by this threshold limit is subtracted from the total shear work increment dWst: 
 
 dWs = dWst − c1 dWse . (5) 
 
A more detailed description of the cyclic mobility model can be found in Iai et al. (1990a) or Iai et al. (1992a).  Iai et al. (1990b) 
provide instructions on how to calibrate these parameters from stress-controlled experiments.  The following test data are required: 
 

i. Liquefaction resistance curve (i.e. the cyclic shear stress ratio τxy/σm0’ vs. the number of cycles N1 required to cause shear 
strain of 5% in double amplitude) 

ii. Envelope of excess pore water pressure generation curve u as a function of cycle number (e.g. right panels in Fig. 4) 
iii. Envelope of shear strain amplitude ε  as a function of cycle number (e.g. left panels in Fig. 4) 

 
Note that stress-controlled experiments must be carried out at different shear stress ratios to define the dilatancy parameters and the 
liquefaction resistance curve.  According to Iai et al. (1990b), the parameters w1, p1, and p2 are first adjusted individually for each 
experiment while keeping c1=1.0.  This is done by trial and error until the modeled pore water pressure increase and shear strain 
amplitude matches the laboratory results.  Typically this will result in different values of w1, p1 and p2 for each experiment.  The whole 
procedure is then repeated while adjusting c1 by trial and error until consistent values are found for each dataset.  Dilatancy parameters 
for the Rhône sediments used by Roten et al. (2009) were determined using this procedure (Table 1). 

 
 

Table 1: Soil parameters assigned to samples from the Rhône valley (after Roten et al., 2009, and Weber et al., 2007). 
 
 

Description Symbol Reported values New values 
porosity n 0.48  
bulk modulus of pore fluid Kf 2.2·109 Pa  
P-wave velocity vp 650 m·s-1  
S-wave velocity vs 200 m·s-1  
shear resistance angle φf’ 40º  
phase transformation angle φp’ 28º  
density ρ 1500 kg·m-3  
coefficient of Earth at rest K0 1.0  
maximum damping ratio ζmax 0.25  
initial dilatancy p1 0.39 0.25 
final dilatancy p2 0.99 1.15 
overall dilatancy w1 1.64 4.18 
dilatancy limit S1 0.005 0.005 
threshold limit c1 1.5 1.21 

 
 
Apart from the five dilatancy parameters, the SSMM uses a number of more common variables.  These include porosity n, bulk 
modulus of the pore fluid Kf, P-wave velocity vp, S-wave velocity vs, shear resistance angle φf’, phase transformation angle φp’, density 
ρ, coefficient of Earth at rest K0 and the maximum damping ratio at large strains ζmax.  These parameters are determined with standard 
procedures in the laboratory or in the field and do not require a trial-and-error approach. 
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INVERSION WITH THE NEIGHBORHOOD ALGORITHM 
 
The neighborhood algorithm (NA), developed by Sambridge (1999a), is a stochastic direct-search method that samples a multi-
dimensional parameter space to find models of minimal data misfit. It is based on the partition of the solution space into Voronoi cells 
and iteratively refines the search in regions that resulted in low misfit during previous iterations. The NA uses only two control 
parameters: the sample size for each iteration, ns and the number of cells to resample, nr. In the case of the Iai et al. (1990) cyclic 
mobility model, the parameter space has five dimensions (p1, p2, w1, S1 and c1).  The forward problem consists in computing the shear 
strain amplitude and pore water pressure generation for a given sample and it is solved using the helper program “stress2strain” 
provided with NOAH (Bonilla et al., 2001).  Depending on the number of available datasets M this is done for multiple shear stress 
ratios for each pseudo-random sample.  The data misfit is defined as  
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where u denotes excess pore water pressure and ε strain.  The superscript “obs” denotes values measured in the laboratory, while 
“sim” refers to values predicted by the forward simulation.  The developments of u and ε are provided as a function of cycle number, 
with the simulated series interpolated to the same sampling rate as the laboratory data (we use 100 samples per cycle).  

 
Fig. 4: Simulated shear strain amplitudes (left panels) and pore water pressure generation curves (right panels) for cyclic shear stress 

ratios of 0.175, 0.150 0.125, and initial confining pressure (σm0’) of 100, 200 and 150 kPa (dotted lines). Gray lines represent the 
input used for the inversion of synthetic data.  Blue lines show the simulated curves for the best-fitting model.  Dashed lines show the 

5% double amplitude threshold. 
 

The misfit is summed up for the history of excess pore water pressure and strain development until the end of the experiment or until a 
strain of 5% double amplitude is reached. This definition is given by Ishihara (1993) to be able to classify the occurrence of large 
deformation both for real liquefaction as well as for cyclic mobility in dilatant soils.  The parameter p controls the contribution of the 
pore water pressure misfit and the strain misfit to the total misfit.  The total misfit is summed up for all the available experiments M, 
typically performed for different levels of shear stress ratio, to find a set of dilatancy parameters that is consistent with all 
observations.  The weight of each dataset can be adjusted with the control parameter wn.  The difference between simulated and 
observed values of u and ε is normalized with the maximum observed value encountered in each experiment. 



 

              6 

Finally, we use the L2 (least squares) criterion for the misfit in excess pore water pressure, but chose the L1 norm to calculate the 
misfit between observed and simulated strain.  This is because the strain tends to increase very quickly once the soil enters the dilative 
zone, and leads to a disproportionate contribution of the final strain to the total misfit.   We found that using the L1 norm for strain 
greatly improves the performance of the inversion program. 
 
 
INVERSION OF SYNTHETIC LABORATORY DATA 
 
We tested the feasibility of the method by applying the NA to a set of simulated laboratory data.  We assumed that the soil sample is 
characterized by p1=0.5, p2=1.2, w1=4.0, c1=1.0 and S1=0.005.  We simulated shear tests at cyclic shear stress ratios τxy/-σ’m0 of 0.175, 
1.50 and 1.25 and added Gaussian distributed random noise to the synthetic shear strain amplitudes and excess pore water pressures 
(gray curves in Fig. 4).  We inverted this synthetic dataset for the dilatancy parameters p1, p2, w1 and c1.  The limits of the parameter 
space were set to 0.4-0.7 for p1, 0.7-1.5 for p2, 1.0-10.0 for w1 and 0.1-2.5 for c1. The dilatancy limit S1 was fixed to 0.005 during the 
inversion, since it is required for numerical stability only. We experimented with different values for the variables nr and ns.  We 
found that the NA converges towards the true dilatancy parameters after 40-50 iterations when using nr=ns=30 (Fig. 5e).  This is a 
rather conservative choice resulting in explorative sampling of the solution space, but it reduces the risk that the NA gets trapped in 
local minima. The best-fitting model was found after 132 iterations for p1=0.501, p2=1.187, w1=3.95 and c1=1.01, yielding a minimum 
misfit of 2.60.  Shear strain and excess pore water pressure curves computed with these parameters, shown by the blue lines in Fig. 4, 
explain the synthetic dataset very well.    
 

 
Fig. 5. (a-d) Model misfit as a function of parameter value for p1, p2, w1 and c1. Vertical black lines indicate the correct soil 

parameters used for generating the synthetic datasets. (e) Minimum misfit as a function of iteration number. 
 
 
Fig. 5 (a-d) shows the model misfit as a function of parameter value for p1, p2, w1 and c1 for the pseudo-random samples generated in 
the course of the inversion.  Samples tend to cluster near the true values (solid black lines in Fig. 5 a-d), since the NA intensifies the 
search in areas of low misfit.  The misfit is most sensitive to the overall dilatancy w1 (Fig. 5c) and the threshold limit c1 (Fig. 5d).  A 
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secondary cluster of samples appears for w1≈6.5, which is associated with the cluster near c1=0.6.  The gap between this secondary 
cluster and the best-fitting solution suggests that this represents a local minimum.  However, pore water pressures and shear strains 
computed with these solutions fail to explain all of the three synthetic datasets, and result in a much higher misfit of 4.35. 
 
While the misfit seems to be less sensitive to the choice of p1 and p2 (Fig. 5 a-b), the best-fitting models identified by the NA are 
characterized p1 and p2 values that are very close to the true parameters.  This suggests that the NA is well suited to calibrate the 
dilatancy parameters from shear strain and pore water pressure curves. 
 
 
INVERSION OF LABORATORY DATA 
 
We applied the same procedure to shear strain and pore water pressure data measured in the laboratory.  We selected the data from 
measurement 6 and 7 from the series of cyclic undrained stress-controlled shear experiments described in Weber et al. (2007).   The 
samples for these tests were extracted from a 6 m deep excavation pit in Visp (Switzerland) and consist of silty sands deposited by the 
Rhône.  Triaxial shear tests 6 and 7 were performed at 50 kPa initial confining pressure using cyclic shear stress ratios of 0.150 and 
0.125, respectively.  Both experiments resulted in a final shear strain amplitude exceeding 5% from peak to peak.  Gray lines in Figure 
6 show the shear strain amplitude and excess pore water pressures as a function of cycle number.   
 

 
Fig. 6: Shear strain amplitudes (left panels) and pore water pressure generation curves (right panels) measured during cyclic triaxial 
shear tests 6 and 7 (grey lines) and for the best-fitting model (blue lines) found during inversion.  Both experiments were performed at 

an initial confining pressure of 50 kPa (dotted lines). 
 
 

To invert these data we used a sample size ns=100, and we set ns=nr to ensure explorative sampling of the solution space. We 
performed 200 iterations, resulting in a total of 20,000 models.   The parameter space limits were set to 0.1-0.7 for p1, 0.2-3.0 for p2, 1-
20 for w1, and 0-2.5 for c1. The lowest misfit was obtained for p1=0.26, p2=1.15, w1=4.18 and c1=1.21.  Synthetic shear strain 
amplitudes and excess pore water pressures obtained with this model (blue lines in Fig. 6) compare favorably with laboratory data.   
Both simulated and measured shear strain amplitudes reach 5% double amplitude after 17 cycles for τxy/σm0’=0.150 and after 34 cycles 
for τxy/σm0’=0.125.  Note that values encountered during later cycles (after the liquefaction threshold has been exceeded) are not 
considered for misfit calculation.  
 
Figure 7 shows the model misfit variation for the individual samples.  The parameters w1 and c1 are resolved more accurately than p1 
and p2, as we noted from the inversion of synthetic data.  The misfit as a function of c1 exhibits a distinct asymmetry near 1.5, and 
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increases quickly for c1 > 1.7.  The values obtained for p1 in the best-fitting models are below the range suggested by Iai et al. 
(1990b), who recommended to use 0.4 < p1 < 0.7 for manual model calibration. 
 
We simulated shear controlled experiments at a range of cyclic stress ratios using the best-fitting model and counted the number of 
cycles to 5% peak-to-peak shear strain for each simulation.  The resulting liquefaction resistance curve (Fig. 8) is in agreement with 
the cycle count of experiment 6 and 7, as it was calibrated from these data.  Weber et al. (2007) performed a third triaxial shear test at 
an initial confining pressure of 50 kPa (Test 8), using a cyclic shear stress ratio of 0.175.  During this experiment the liquefaction 
threshold was reached after 8 cycles, which is essentially in agreement with the obtained liquefaction resistance curve.  Tests 5 and 9, 
on the other hand, reached failure after just 5 and 7 cycles, respectively, which is much earlier than suggested by the remaining tests 
and our liquefaction resistance curve. Tests 5 and 9 have been conducted at higher confining pressures (100 and 200 kPa respectively).  
Therefore, it is not possible to find a soil parameterization that explains all these measurements.   However, it would be feasible to 
invert the strain amplitudes and excess pore pressure curves from tests 6, 7 and 8 simultaneously for the dilatancy parameters. 
 
The dilatancy parameters reported in our previous study (Roten et al., 2009) were obtained by manually fitting the shear strain 
amplitude and excess pore water pressure from each experiment using a threshold limit c1 of 1.5.  As they represent the average of the 
six experiments, they differ from the values we obtained by inverting the data from test 6 and 7 only (Table 1). 
 

 
Fig. 7. Same as Fig. 5, but showing inversion results for laboratory data (test 6 and 7). 

     
 
CONCLUSIONS 
 
We have developed a method that simplifies the identification of dilatancy parameters from stress-controlled experiments based on 
direct inversion of shear strain amplitudes and excess pore water pressure curves with the Neighborhood algorithm (Sambridge, 
1990a).  This approach avoids repetitive trial-and-error procedures when calibrating the parameters in the Iai et al. (1990a) cyclic 
mobility model.  The strength of the method lies in its capability to invert data from several shear experiments, performed at different 
cyclic shear stress ratios, in one step. 
We have validated the method by inverting a set of three synthetic laboratory measurements for the dilatancy parameters p1, p2, w1 and 
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c1.  The algorithm is converging after 40-50 iterations, and the samples with the lowest misfit are very close to the true dilatancy 
parameters.  Additionally we have applied the inversion tool to two measured shear strain and excess pore water pressure curves 
representing soil samples from the Rhône valley in southern Switzerland.  Models with the lowest misfit identified by the NA are able 
to reproduce the laboratory data reasonably well.  The liquefaction resistance curve provided by the identified dilatancy parameters is 
also in agreement with the soil behavior suggested by the laboratory measurements, even though some of the tests will not be 
reproduced due to the stress dependency of the soil behavior. 
 

 
 

Fig. 8.  Cyclic shear stress ratio vs. number of cycles required for a shear strain of 5% double amplitude (from Weber et al., 2007).  
The gray line shows the liquefaction resistance curve obtained from simultaneous inversion of the shear strain amplitude and excess 

pore water pressure curves of tests 6 and 7. 
 
 
Inversions of simulated and measured laboratory data suggest that the NA must be configured to explorative, rather than exploitative, 
behavior to find the correct solution.  That is, large values have to be selected for both the sample size ns and the number of cells re-
sampled during each iteration nr; we used nr=ns=50 for the synthetic and nr=ns=100 for the measured dataset.  These values are 
significantly higher than the number of model dimensions d would suggest:  Sambridge (1990a) recommends ns=2 d, nr= ns/2 and a 
number of iterations between 10 ns and 100 ns.   Our experiments with simulated and measured data suggest that much larger values 
are required, which may reflect the strong nonlinear nature of the problem.    
 
The computational time required for one inversion is in the order of a few minutes.  For example, the inversion of the two measured 
datasets required 15 minutes using non-optimized code on a 3.2 GHz Linux workstation.  This promises to significantly streamline the 
process of parameter identification.  The manual determination of dilatancy parameters performed during previous work (Roten et al., 
2009) required several hours per dataset, and days for all the measurements.   
 
We will apply the NA to characterize more soil samples of the Rhône sediments, and samples collected at other locations in 
Switzerland.  Based on the experience from these inversions we will further refine the method.  Special attention will be directed 
towards characterizing uncertainties in the dilatancy parameters by analyzing the ensemble of all models that are in agreement with 
observations.  
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