Engineering Characterization of Spatially Variable Ground Motion

Timothy D. Ancheta *PEER Center, UC Berkeley* Jonathan P. Stewart *UCLA Civil & Environmental Engineering Department* Norman A. Abrahamson *Pacific Gas & Electric Co., San Francisco, CA*

ESG4 Conference Santa Barbara, CA. August 26 2011

Acknowledgements to:

Robert L. Nigbor and Jamie Steidl for providing access to Borrego Valley Differential Array data

CEA for project funding

Outline

- Motivation
- Metrics of spatial variability in ground motions (SVGM)
- Simulation procedure for generating SVGMs
- Investigation of seismic ground strains
- Conclusions

Motivation

12

----- E: ξ = 160 m

Kato et al., 1998

Example applications

Seismic demands on buried structures (pipelines, tunnels)

e.g., Hashash et al., 2001 O'Rourke and Deyoe, 2004

Example applications

Seismic demands on buried structures (pipelines, tunnels)

Multi-support excitation for extended structures (bridges)

e.g., Der Kiureghian & Neuenhofer, 2004

Example applications

Seismic demands on buried structures (pipelines, tunnels)

Multi-support excitation for extended structures (bridges)

Foundation – level ground motion reduction from kinematic soil-structure interaction

e.g., ASCE-41

Rancho Cucamonga Law & Justice Center 1987 Whittier Earthquake

Outline

- Motivation
- Metrics of spatial variability in ground motions (SVGM)
- Simulation procedure for generating SVGMs
- Investigation of seismic ground strains
- Conclusions

Metrics of SVGM

- Wave passage
- Lagged coherency
- Amplitude variability
- Correlations

Zerva, 2009

Sensitive to waveform duration – full signal or S-window

Can have poor results if varying site conditions

Lotung SMART 1 data: Boissieres and Vanmarcke (1995)

Lotung SMART 1 data: Boissieres and Vanmarcke (1995)

BVDA Event	θ (deg.)	V _{app,θ} (m/sec)	V _{app} (m/sec)		LSST Event	θ (deg.)	V _{app,θ} (m/sec)	V _{app} (m/sec)			
2	7	12048	1468	-	4	29	11976	5806			
3	7	12270	1495		5	-69	-2260	2110			
4	7	11834	1442		6	-84	-1441	1433			
5	72	3527	3355		7	-105	-2472	2388			
6	63	2959	2636	_	16	-84	-1795	1785			
8	89	3017	3016	-		σ_{InV} =	0.84	0.54			
9	31	4902	2525			Med.=	2260	2110			
10	2	na	na								
11	82	3914	3876			Lowe	$r \sigma_{lnv}$	for V _{app}			
13	2	na	na			nreferred to V					
14	58	8734	7407			prej	Crica	арр			
16	31	2999	1544								
	σ _{InV} =	0.62	0.54			$V_{app} = 2.1-2.6 \text{ km/s}$ $\sigma_{lnV} = 0.5-0.6$					
	Med.=	4408	2580								

BVDA and LSST Data (this study)

BVDA and LSST Residuals (this study)

Reflects phase variability that remains after aligning stations (removing wave passage and ATP).

Derived from smoothed power spectral density functions

$$\gamma_{jk}(f) = \frac{S_{jk}(f)}{\left[S_{jj}(f)S_{kk}(f)\right]^{\frac{1}{2}}}$$
$$\gamma(\xi, f)_{jk} = \left|\gamma(\xi, f)_{jk}\right| \exp\left[i\theta(\xi, f)_{jk}\right]$$

Sensitive to level of smoothing, windowing procedures, etc.

Complex statistical properties

Kernal density estimate of PDF

Complex statistical properties

Transformation using tanh⁻¹ **produces normal distribution**

Trends with frequency and distance (BVDA data)

Model bias for f < 10 Hz and $\xi < 30$ m

Chiba and LSST array data

Bias for Chiba; no bias for LSST

Adjusted model compared to data

Adjusted model compared to data

Amplitude Variability

Fourier amplitude variation in pair, $\Delta A(\xi, f)$

log frequency

Amplitude Variability

Fourier amplitude variation in pair, $\Delta A(\xi, f)$

Distribution of $\Delta A(\xi$, f) has mean zero and $\sigma_{\!\Delta A}$

Amplitude Variability

BVDA & LSST data

Correlations

Frequency-to-frequency correlations for coherency or amplitude variability

Weak correlation

Correlations

Frequency-to-frequency correlations for coherency or amplitude variability

Amplitude variability – coherency correlation

Outline

- Motivation
- Metrics of spatial variability in ground motions (SVGM)
- Simulation procedure for generating SVGMs
- Investigation of seismic ground strains
- Conclusions

SVGM Simulations

- Objective
- Phase modification
- Amplitude modification
- Frequency-dependent windowing

Objective

Given seed accelerogram, generate simulated motion compatible with $|\gamma|$ and ΔA models

Useful for response history analysis of structures

Useful for estimation of ground strains

Phase Modification

 $\phi_j(f,\xi) = \phi_i(f) + \varepsilon_{ij}^n(f,\xi) + 2\pi f \Delta t$

Phase of seed record

Phase Modification

$$\phi_j(f,\xi) = \phi_i(f) + \varepsilon_{ij}^n(f,\xi) + 2\pi f \Delta t$$

Random phase change. Zero Mean Standard deviation σ_{ϕ}

Normal distribution Appears uniform at high frequency due to wrapping

Phase Modification

Wave passage. Δt from ξ and $V_{app,\theta}$

Phase Modification

Result of phase modification (full duration):

$$A_{j}(f) = \exp\left\{\ln\left(A_{i}(f)\right) + \varepsilon_{ij}^{A}(f)g\frac{1}{\sqrt{2}}\sigma_{\Delta A}(f)\right\}$$

Amplitude of seed record

$$A_{j}(f) = \exp\left\{\ln\left[A_{i}(f)\right] + \varepsilon_{ij}^{A}(f) + \frac{1}{\sqrt{2}}\sigma_{\Delta A}(f)\right\}$$

Gaussian random number. Mean zero Standard deviation of unity

$$A_{j}(f) = \exp\left\{\ln\left[A_{i}(f)\right] + \varepsilon_{ij}^{A}(f)g\frac{1}{\sqrt{2}}\sigma_{\Delta A}(f)\right\}$$

From amplitude variability model

$$A_{j}(f) = \exp\left\{\ln\left[A_{i}(f)\right] + \varepsilon_{ij}^{A}(f)g\frac{1}{\sqrt{2}}\sigma_{\Delta A}(f)\right\}$$

To represent single station amplitude variability

(c)

Critical details:

- Windowing procedure
- Recombination procedure

Details in Ancheta et al. (2011, Earthquake Spectra, in review)

Compare simulations to underlying models

Outline

- Motivation
- Metrics of spatial variability in ground motions (SVGM)
- Simulation procedure for generating SVGMs
- Investigation of seismic ground strains
- Conclusions

Seismic Ground Strains

- Previous work
- Procedure for simulation-based strain estimation
- Simulation results & prediction equations
- Verification using array data

Previous Work

Strains from wave passage

$$PGS = A \frac{PGV}{V_{app}}$$

Newmark, 1967 Yeh (1974) St. John and Zahrah (1987) Trifunac and Lee (1996) Hashash et al. (2001) **Previous Work**

Strains from wave passage

Inference of strains from arrays using geodetic approach O'Rourke et al. (1984) Bodin et al. (1997) Gomberg et al. (1999) Paolucci and Smerzini (2008)

Previous Work

Paolucci and Smerzini (2008)

Strain Estimation from Simulations

- 1. N_i seed motions selected for $j=1..N_e$ events
- 2. For each seed motion, simulate N_s motions for suites of separation distances ($\xi = 6$, 10, 20, 40, 80 m) and apparent velocities (V_{app}).
- Each seed-simulated motion
 integrated twice to displacement & normalized by ξ to calculate strain history. Peak is PGS.

Strain Estimation from Simulations

Events

- M 4.9 Anza, CA
- M 4.9 Big Bear City, CA
- M 6.0 Whittier, CA
- M 6.1 North Palm Springs, CA
- M 6.5 Big Bear City, CA
- M 6.7 Northridge, CA
- M 6.9 Loma Prieta, CA
- M 7.5 Kocaeli, Turkey
- M 7.6 Chi Chi, Taiwan
- M 7.9 Denali, AL

Soil sites selected

135 motions

Affected by $\boldsymbol{\xi}$

Saturation effect for PGV > ~ 80 cm/s

Fitting of Model

ln PGS	$\xi_{ijk} \mid \xi = \begin{cases} a \\ y \end{cases}$	$\alpha + \beta \ln \beta$	PGV _{ijk} +	for <i>PGV</i> otherwi			
	ξ (m)	α (ξ)	SE(α)	β (ξ)	SE(β)	ψ (ξ)	$SE(\psi)$
	6	-10.92	0.0092	0.866	0.0035	-7.02	0.059
	10	-11.35	0.0089	0.879	0.0034	-7.39	0.053
	20	-11.83	0.0086	0.892	0.0033	-7.76	0.047
	40	-12.25	0.0088	0.927	0.0034	-8.06	0.048
	80	-12.56	0.0092	0.959	0.0035	-8.25	0.050

Final coefficients from random effects analysis.

FOSM used to represent range of V_{app} in data set.

Fitting of Model

Verification of ξ -Dependence

Outline

- Motivation
- Metrics of spatial variability in ground motions (SVGM)
- Simulation procedure for generating SVGMs
- Investigation of seismic ground strains
- Conclusions

Summary of Key Results

- Three key metrics of SVGM.
 - Wave passage: Recommendations on $V_{\rm app},\,\sigma_{\rm lnv}$ and importance of ATP
 - Modest adjustment of previous $|\gamma|$ model
 - Model for amplitude variability
- Simulation procedure provides realistic spatially variable waveforms including amplitude variability.
- New insights on ground strain:
 - Separation distance dependence
 - Saturation at large PGV

More Information

- Metrics of SVGM: this conference
- SVGM simulations: Ancheta et al., Earthquake Spectra, in review
- Ground strains: Ancheta (2010) dissertation; soon in PEER report