

Overview of NEES@UTexas Site

The 4th International Symposium on the Effects of Surface Geology on Strong Ground Motion

> Prepared by Farn-Yuh Menq Presented by Robert Nigbor

Overview of NEES@UTexas Site

- Site equipment
- Applications

Large Shakers Available for Scientists and Engineers at NEES@UTexas

a. High-force, three-axis shaker called T-Rex

c. Single-axis, vertical shaker called Raptor

e. Urban, three-axis shaker called Thumper

b. Low-frequency, two-axis shaker called Liquidator

d. Single-axis, horizontal shaker called Rattler

f. Tractor-trailer rig with T-Rex

Tri-Axial Shaker ("T-Rex")

- Buggy-mounted vibrator
- Total weight 64,000 lb (29,030 kg)
- 32 ft (9.8 m) long
- 8 ft (2.4 m) wide

- **3 Vibration orientations**
 - Vertical
 - Horizontal in-line
 - Horizontal cross-line
- Uses vegetable-based hydraulic oil (Panolin oil model number: HLP SYNTH 46)

Installation of Embedded Sensors

Low-Frequency Shaker ("Liquidator")

- Built on same platform as the T-Rex
- Optimized for low-frequency (down to 0.5 Hz) force output

Urban Shaker ("Thumper")

- Built for high-frequency force output (beyond range of T-Rex and Liquidator)
- Built for use in urban environments
- Total weight = 24,800 lb (11,300 kg)
- Peak force = 6,000 lb (26.7 kN)
- Transformable to operate vertically or horizontally

Mid-Size P-Wave Shaker ("Raptor")

- 1982 International Paystar Y-1100 P-Wave Vibrator
- Peak force = 27,000 lb (120 kN)
- Ideal for locations where the force output of Thumper is not sufficient but the operation of T-Rex would certainly draw unwanted attention

Shear-Wave Shaker ("Rattler")

- 1980 Mertz Model 13/609 Shear-wave Vibrator
- Peak force = 30,000 lb (133.5 kN)
- Can be synchronized with T-Rex to excite in a condition closer to a plane-strain condition for in-situ liquefaction and nonlinear soil testing

Theoretical Force Output of nees@UTexas Shakers

Other Supporting Vehicles

Instrumentation Trailer

Local Test Site for Proof-of-Concept Trials

Data Acquisition Systems (DAS)

DataPhysics

- VXI system: 64 channels of acquisition at a sampling rate of 100 kS/s and 8 channels of acquisition at a sampling rate of 196 kS/s.
- DataPhysics system: 32 channels of acquisition at a sampling rate of 200 kS/s
- 4 channel DataPhysics analyzer

• Taurus Digital Seismograph * 10

- 3 Channel each
- Data stored in MiniSeed format
- Battery powered
- Compact packages for ease of deployment

- 64 of 1-Hz vertical geophones
- 24 of 1-Hz Horizontal geophones,
- 12 of 10-Hz 3-D geophones,
- 13 of Trillium Compact, 3-component, 120 second seismometers
- Prototype in-situ liquefaction sensors,
- Cone penetrometer test (CPT) and seismic CPT equipment

Calibrations - Overview

- Soil and Rock Dynamics Laboratory at the Univ. of Texas at Austin is a Nuclear Quality Assurance Level 1 (NQA1) certified laboratory for both field and laboratory dynamic measurements since 1998.
- Calibrations of NEES@UTexas equipment are piggyback on the QA program developed in the Soil and Rock Dynamics Laboratory.

Calibrations – Project Oriented

- Sensors and DAS are calibrated each year based on the request of NEESR and added shared-use projects.
- DAS systems are
 - calibrated in house following the QA program developed in the Soil and Rock Dynamics Laboratory with calibrated instrumentation
 - 2. calibrated by the manufacturer.
- Sensors are calibrated in house following the QA program developed in the Soil and Rock Dynamics Laboratory with calibrated instrumentation and reference sensors
- Cables and connectors are inspected before and after field tests

Calibration Examples – 1-Hz Geophone

Calibration Examples – 1Hz Geophone

Research Areas of Shared-Use Projects

24 NEESR and added shared-use projects in the areas of:

- soil-foundation-structure interaction studies,
- deep shear-wave velocity profiling,
- in-situ nonlinear shear modulus measurements of soil,
- in-situ liquefaction tests,
- geophysical studies.

Locations of Shared-Use Projects

Shared-Use Projects

- 1. Pre NEES Title: NW Nevada Seismic Experiment (2004), PI: Simon Klemperer @ Stanford Univ.
- 2.1. Pre NEES Title: Collaborative Research: Using NEES as a Testbed for Studying Soil-Foundation-Structure-Interaction (2004), PI: Sharon Wood @ UT Austin
- 2.2. Pre NEES Title: Field Measurements of the Linear And Nonlinear Shear Moduli of Soils (2006), PI: Sharon Wood @ UT Austin
- 3. NEESR Title: In-Situ Determination of Soil Modulus and Damping as a Function of Level of Strain (2005), PI: Giovanna Biscontin @ TXAM
- 4. Added Share-use Title: In-Situ Soil Nonlinear Properties Study (2005), PI: Joan Gomberg @ USGS
- 5. Added Share-use Title: Collaborative Study of Field Evaluation of Liquefaction Resistance at Previous Liquefaction Sites in Southern California (2005), PI: Kenneth H. Stokoe @ UT Austin
- 6. NEESR II Title: Study of Surface Wave Methods for Deep Shear Wave Velocity Profiling Applied to the Deep Sediments of the Mississippi Embayment (2006), PI: Brent Rosenblad @ University of Missouri-Columbia
- 7. NEESR Piggy back Title: A Phase 1 Prediction of Dynamic Response of Spread Footings on Sand (2006), PI: Dennis R. Hiltunen @ University of Florida
- 8. NEESR II Title: Mechanisms and Implications of Time Dependent Changes in the State and Properties of Recently Liquefied Sands (2006), PI: Russell A. Green et al. @ University of Michigan
- 9. Added Share-use Title: SASW Testing in the Salt Lake Valley, UT (2006), PI: Kenneth H. Stokoe @ UT Austin
- 10. Added Share-use Title: Seismic Reflection Transect Across the New Madrid Seismic Zone: Imaging Spatial and Long-Term Temporal (2006), PI: Robert Williams @ USGS
- 11. Added Share-use Title: Study of Surface Wave Methods for Deep Shear Wave Velocity Profiling Applied to the Deep Sediments of the Mississippi Embayment Phase II (2007), PI: Brent Rosenblad @ University of Missouri-Columbia
- 12. NEESR GC Title: Seismic Risk Mitigation for Ports: nees@UTexas equipment will be used for an in-situ liquefaction investigation (2007), PI: Glenn Rix et al. @ Georgia Institute of Technology

Shared-Use Projects – Continue

- 13. Added Share-use Title: Collaborative USGS-NEES Studies in the Mississippi Embayment (2007), PI: Robert Williams @ USGS
- 14. NEESR Title: High-Fidelity Site Characterization by Experimentation, Field Observation, and Inversion-Based Modeling (2007), PI: Jacobo Bielak @ Carnegie Mellon University
- 15.1. Added Share-use Title: Collaborative USGS-NEES Studies in the Santa Rosa Plain, California (2008), PI: Robert Williams @ USGS
- 15.2. Added Share-use Title: Collaborative USGS-NEES Studies in the Mississippi embayment and the Seattle Basin (2008), PI: Robert Williams @ USGS
- 16. Added Share-use Title: SASW Measurements at USGS Hawaiian Strong Motion Network (2008), PI: Ivan Wang @ URS
- 17. SGER Title: Deep Shear Wave Velocity Measurements in the Las Vegas Basin (2008), PI: Barbara Luke @ University of Nevada, Las Vegas
- 18. Added Share-use Title: Collaborative USGS-NEES Earthquake Hazard Studies in the Reno-Carson City Urban Corridor, Nevada, 2009 (2009), PI: William Stephenson @ USGS
- 19. NEESR-II Title: Advanced Site Monitoring and Effective Characterization of Site Nonlinear Dynamic Properties and Model Calibration (2009), PI: Mourad Zeghal @ Rensselaer Polytechnic Institute
- 20. NEESR-CR Title: Topographic Effects in Strong Ground Motion From Physical and Numerical Modeling to Design (2010), PI: Adrian Rodriguez-Marek @ Washington State University
- 21. Added Share-use Title: Shear Wave Velocity Measurements at Stanford University (2009), PI: Ivan Wang @ URS
- 22. Added Share-use Title: Collaborative USGS-NEES Earthquake Hazard Studies in the New Madrid Seismic zone and Puget Sound, Washington (2010), PI: Robert Williams @ USGS
- 23. Added Share-use Title: Characterizing the geometry and time of deformation of the Meeman-Shelby Fault, near Memphis, TN (2010), PI: M.Beatrice Magnani @ University of Memphis
- 24. NEESR-CR Title: Seismic Response of Landfills: In-situ Evaluation of Dynamic Properties of Municipal Solid Waste, Comparison to Laboratory Testing, and Impact on Numerical Analyses (2010), PI: Dimitrios Zekkos @ University of Michigan

Site Amplification Studies

Required:

1.Stiffness (shear modulus)

- Shear modulus at small strain: shear-wave velocity (V_s) profile
- Shear modulus at large strain: insitu nonlinear shear modulus measurements of soil

2.Material damping

SASW Measurements at USGS Hawaiian Strong Motion Network

PI: Ivan Wang (URS)

Study of Surface Wave Methods for Deep Shear Wave Velocity Profiling of the Mississippi Embayment PI: Brent Rosenblad (Univ. of Missouri)

Study of Surface Wave Methods for Deep Shear Wave Velocity Profiling of the Mississippi Embayment PI: Brent Rosenblad (Univ. of Missouri)

- Deep shear wave velocity measurements (> 200m) at 11 sites
- Comparing 4 surface wave measurement techniques:
 - (1) active source, SASW
 - (2) active source, MASW
 - (3) passive source with circular array,
 - (4) passive source with linear array

Current Approach to Evaluate Field Nonlinear Shear Modulus with Shear Strain Level

In-situ nonlinear shear modulus measurements of soil (College Station, TX) PI: Giovanna Biscontin (TXAM Univ.)

In-situ nonlinear shear modulus measurements of soil (College Station, TX) PI: Giovanna Biscontin (TXA&M Univ.)

Shearing Strain, %

In-situ nonlinear shear modulus measurements at Yucca Mountain (Material can't be tested in the lab)

Coarse Grain: $D_{50} = 0.4-24.8 \text{ mm}$, $C_u = 16-86$, $w = \sim 0\%$ Cementation: visible and quite variable spatially Source: Schuhen, 2008

Soil Liquefactions

What are the mechanisms of soil liquefactions?
How can we determine if a site of interest will liquefy during an earthquake?
How can we mitigate soil liquefaction induced hazards?

Field Evaluation of Liquefaction Resistance at Previous Liquefaction Sites in Southern California (Imperial Valley) PI: Kenneth H. Stokoe, II (UT Austin)

Field Evaluation of Liquefaction Resistance at Previous Liquefaction Sites in Southern California (Imperial Valley) PI: Kenneth H. Stokoe, II (UT Austin)

Field Evaluation of Liquefaction Resistance at Previous Liquefaction Sites in Southern California (Imperial Valley) PI: Kenneth H. Stokoe, II (UT Austin)

Mechanisms and Implications of Time Dependent Changes in the State and Properties of Recently Liquefied Sands Pls: Russell A. Green (Univ. of Michigan)

Seismic Risk Mitigation for Ports Soil Improvement of Soil Liquefaction Resistance PI: Glenn Rix (Georgia Institute of Technology)

Seismic Risk Mitigation for Ports Soil Improvement of Soil Liquefaction Resistance PI: Glenn Rix (Georgia Institute of Technology)

Application of the NEES T-Rex Vibrator for 3-component Crustal Reflection/Refraction Profiling Pls: Simon Klemperer (Stanford Univ.)

Derek W. Lerch, Simon L. Klemperer, Kenneth H. Stokoe, and Farn-Yuh Menq, , (2008) "Integration of the NEES T-Rex Vibrator and PASSCAL Texan Recorders for Seismic Profiling of Shallow and Deep Crustal Targets," Seismological Research Letters , Vol. 79, No.1, pp 791-809

Application of the NEES T-Rex Vibrator for 3-component Crustal Reflection/Refraction Profiling Pls: Simon Klemperer (Stanford Univ.)

▲ Figure 2. Best source gather from crustal profile. Coherent arrivals visible to offsets of ~ 20 km, with discontinuous energy visible to ~50 km. Wide gray line represents Moho travel time calculated from the Lerch *et al.* (2007) wide-angle velocity model. Gather produced by stacking ten coincident sweeps, applying a bandpass filter (4-6-36-42 Hz), and performing a predictive deconvolution.

Derek W. Lerch, Simon L. Klemperer, Kenneth H. Stokoe, and Farn-Yuh Menq, , (2008) "Integration of the NEES T-Rex Vibrator and PASSCAL Texan Recorders for Seismic Profiling of Shallow and Deep Crustal Targets," Seismological Research Letters , Vol. 79, No.1, pp 791-809

Reflection Survey of Fault Structures Sponsored by USGS Pls: Robert Williams & William Stephenson (USGS)

One to two field tests each year at: (1) the New Madrid Seismic Zone, (2) the Santa Rosa Plain, CA, (3) the Seattle Basin, and (4) the Reno-Carson City Urban Corridor, NV

Reflection Survey of Fault Structures Sponsored by USGS Pls: Robert Williams & William Stephenson (USGS)

Reflection Survey of Fault Structures Sponsored by USGS Pls: Robert Williams & William Stephenson (USGS)

- Provide high-resolution images of the sediment structure and faults (total 55+ km since 2004)
- The end-member product of the information will be contribution to both the U.S. Geological Survey National and Urban seismic hazard maps.

Topographic Effects in Strong Ground Motion Field Measurements

PI: Adrian Rodriguez-Marek (Washington State Univ.)

Topographic Effects in Strong Ground Motion Field Measurements

PI: Adrian Rodriguez-Marek (Washington State Univ.)

U. S. National Science Foundation, Directorate for Engineering, Division of Civil and Mechanical Systems for funding under the George E. Brown, Jr. Network for Earthquake Engineering Simulation (NEES) Program Contract No. CMS-0086605 (Construction Phase)

NEEScomm supported by the George E. Brown, Jr. Network for Earthquake Engineering Simulation (NEES) Program of the National Science Foundation under Award Number CMS-0402490 (Operation Phase)