Site-Response Analysis

When not to do it
What approach to use for long period motions

C.B. Crouse URS Corporation

August 2011

T_L Map in ASCE 7

Two SHA Approaches (cont.) – Ch. 21

- 2. Site-Specific
- Probabilistic (PSHA)
- Deterministic (DSHA)

Preferred or Required for Important/Critical Structures

Site Response Analysis (SRA) – Ch. 21

When not to do SRA

Stiff soil sites
 i.e. Site Class C & D per ASCE 7

Recommendation

- Use F_a & F_v Site Coefficients in ASCE 7

 V_{S30} = ave. shear-wave velocity in upper 30m (Direct Approach)

NGA Database – Chou & Youngs

Site Categories

- A Hard Rock
- B Rock
- C V. Stiff Soil
- D M. Stiff Soil
- E Soft Soil

Turkey Flats Blind Prediction Experiment

California Geological Survey

Objective

Predict soil motions given rock motions recorded during 2004 M6 Parkfield, CA EQ

Turkey Flats SM Instrumentation

V_S Survey at V1 Station

Predicted NS Response Spectra at V1

Predicted EW Response Spectra at V1

Approach for Computing Long Period S_a

Use 3-D Numerical Models Application: Urban Areas End Product Long Period S_a Maps

Next Generation Seismic Codes

Modeling Regional Effects on Long Period Motions

NGA Equations with Basin Depth Terms

- Abrahamson & Silva Z1.0
- Campbell & Bozorgnia Z2.5
- Chiou & Youngs Z1.0

Basin Profile

M 7.8 San Andreas Earthquake Simulations

M 7.8 San Andreas Earthquake Simulations

Recommendation

Conduct pilot study for L.A. Basin

- Objective Generate Long-Period Ground-Motion Maps per PSHA/DSHA Procedures in Ch. 21, ASCE 7-10
- Substitute Simulations for GMPEs

Approach

PSHA for Fault i, Magnitude j

Simulated $S_a(T) \implies P_i (S_a > A T M_j)$ $V_{ij} = Rate/yr of M_j on Fault i$ $V_{ij} \cdot P_i (S_a \ge A T M_j)$

Rate/yr of $S_a \ge A$ for Fault i & M_i

Total Ground-Motion Hazard

Total Rate/yr of $S_a \ge A$

L.A. Pilot Study End Poducts

Contour Maps of $S_a(T)$

for

Selected T in $\sim 3 \le T \le 10$ sec range

Comparison of Maps

Simulation-Based Maps vs Empirical-Based Maps using NGA eqns

Direction for Developing Long Period S_a Maps in ASCE-7