4th IASPEI / IAEE International Symposium Santa Barbara, California, Aug 23-26, 2011

Numerical modeling of liquefaction effects:

Development & initial applications of a sand plasticity model

Ross W. Boulanger Ronnie Kamai Katerina Ziotopoulou

Ronnie Kamai Doctoral candidate

Katerina Ziotopoulou Doctoral candidate

PM4-Sand: A sand plasticity model for nonlinear seismic deformation analyses

The challenge for a constitutive model

- > Varied conditions:
 - Loose to dense zones
 - Drained to undrained loading
 - Low to high confining stresses
 - Low to high initial static shear stress ratios
- > Common data: V_s , N_{60} , q_c , gradations

The challenge for a constitutive model

> Calibration to design correlations:

- Triggering & cyclic mobility/ratcheting
- G/G_{max} and damping
- Strengths
- Others depending on the structure (e.g., volumetric strains)

Triggering

Plasticity model for sand – Starting point

- Starts with framework of Dafalias-Manzari (2004) model
 - Critical state, stress-ratio based
 - Bounding and dilation surfaces rotate with changes in state
 - Fabric tensor used to enhance contraction rates

Plasticity model for sand – Modifications

- Modified & calibrated at equation level to approximate design correlations for practice
 - Modified fabric tensor to depend on plastic shear strains
 - Added fabric history, including cumulative fabric term
 - Plastic modulus (K_p), elastic moduli (G), and dilatancy (D) depend on fabric and fabric history
 - D constrained by Bolton's (1986) dilatancy relationship
 - Recast in terms of relative state parameter index (ξ_R)
 - Inclusion of sedimentation effects
 - Modified logic for updating initial back-stress ratio
 - Neglects Lode Angle dependence
- Implemented as a user-defined material model in FLAC (Itasca 2010)

Practical means for including critical state framework

> Dilatancy & bounding surfaces collapse to M at critical state ($\xi_R = 0$)

$$M^{b} = M \cdot exp(-n^{b}\xi_{R}) \qquad M^{d} = M \cdot exp(n^{d}\xi_{R})$$

Fabric effects

> Dilatancy

$$D = A_{d} \cdot \left[\left(\alpha^{d} - \alpha \right) : \mathbf{n} \right]$$

$$A_{d} = \frac{A_{do} \left(C_{zin2} \right)}{\left(\frac{Z_{cum}^{2}}{Z_{max}} \right) \left(1 - \frac{\langle -\mathbf{z} : \mathbf{n} \rangle}{\sqrt{2} \cdot Z_{peak}} \right)^{3} \left(C_{\varepsilon} \right) \left(C_{pmin} \right) \left(C_{zin1} \right) + 1$$

$$D = A_{dc} \cdot \left[\left(\alpha - \alpha^{in} \right) : \mathbf{n} + C_{in} \right]^{2} \frac{\left(\alpha^{d} - \alpha \right) : \mathbf{n}}{\left(\alpha^{d} - \alpha \right) : \mathbf{n} + C_{D}}$$

$$A_{dc} = \frac{A_{do}}{h_{p}}$$

$$A_{dc} = f \left(\mathbf{z}, \xi_{R}, \ldots \right)$$

Functionality versus simplicity

Simple parts, easy to understand

- \succ Relative density (D_R)
 - Estimate from SPT or CPT; adjusts stress-strain responses
- Shear modulus coefficient (G_o)
 - Calibrate to in-situ V_s data or correlations
- > Contraction rate parameter (h_{po})
 - Calibrate to CRR estimated from SPT- or CPT-based liquefaction correlations
- Secondary parameters
 - 18 secondary parameters with default values chosen to approximate design correlations

Site response of Port Island and Wildlife Liquefaction Arrays

Wildlife liquefaction array

[Data from Bennett et al. 1984, Holzer & Bennett 2010 personal comm.]

WLA response in 1987 Superstition Hills Eq.

Surface motion

Centrifuge test with lateral spreading

Centrifuge model SSK01

[NEES test by Kamai, Kano, Conlee, Marinucci, Boulanger, Rathje, Rix, and Howell 2008]

Calibration

V_s measured in the model
 CRR from lab tests

Input motion: Sequence of progressively stronger shaking events, each being 20 cycles at 2Hz

Excess pore pressures

Displacements

Strain concentration beneath clay crust

Strain concentration beneath clay crust

Centrifuge test of slope with silt interlayers

Centrifuge test of slope with silt interlayers

> Nevada sand, $D_R \approx 35\%$

- 0 100 200 mm model scal
- 0 4.5 9.0 m prototype scale
- Pore Pressure Transducer
- Accelerometer
- Schement Transducer

(Malvick, Kutter, & Boulanger 2008)

Initial stresses

Accelerations

Excess pore pressures

Strains & displacements

Strain concentration at silt seam

Influence of localization scale, permeabilities, re-sedimentation strains and other factors.

Strain concentration at silt seam

Influence of localization scale, permeabilities, re-sedimentation strains and other factors.

- PM4-Sand is a stress-ratio controlled, critical state compatible, bounding surface plasticity model with fabric which was developed and calibrated to approximate trends in design correlations commonly used in the USA.
- Initial applications of PM4-Sand have been promising, suggesting that it reasonably approximates the principle behaviors of liquefying sands.
- > Numerical analyses of liquefaction effects
 - can provide valuable insights regarding complex mechanisms of behavior, but
 - can have significant bias and dispersion in computed responses depending on the specific problem (and on the numerical procedures & calibration protocols).
- Dynamic centrifuge model studies provide a valuable basis for systematically evaluating numerical analysis methods.

- > U. S. Geological Survey (Award G09AP00121)
- International Fulbright Science and Technology Award from the Institute of International Education and U.S. Department of State
- National Science Foundation (NSF) for support for the centrifuge tests

4th IASPEI / IAEE International Symposium Santa Barbara, California, Aug 23-26, 2011

Thank you.

Ross W. Boulanger Ronnie Kamai Katerina Ziotopoulou

Strains & displacements

Localization scales in the field?

Localization scales in the field?

(modified after Naesgaard et al. 2006)

a) Continuous water film

c) Undulating surface

b) Venting + collapse of water film

d) Spatial discontinuity of barriers

Port Island Array, Kobe

[Data from]

PIA response in 1995 Kobe Earthquake

Surface motion

