Analysis of borehole data

Luis Fabian Bonilla

Universite Paris-Est, IFSTTAR, France

Outline

- Advantages of borehole data
- Difficulties of working with these data
- Understanding linear and nonlinear modeling
- Working proposition?

1. Advantages of borehole data

Wave propagation from bedrock to surface

PGA distribution (KiK-net)

Field data observation of soil nonlinearity onset?

Statistical analysis with respect to magnitude and Vs30

Calibration of soil models

Stress computation from deformation data

Waveform modeling

Revealing nonlinear response

- 2011 Tohoku earthquake data
- Predominant frequency more affected than fundamental
- Affected frequency increases as Vs30 increases

Port Island, Kobe / Kushiro Port

Velocity model is not always enough!

2. Difficulties of borehole data

Downgoing wavefield

Site response (outcrop response) is not the same as borehole response

Vs30 uncertainty (lack of knowledge of the medium)

- Variability within each soil class is important
- This variability is even larger at depths greater than 30 m
- Is Vs30 enough?

3000.0

 Not always core sampling, thus no dynamic soil parameters

Analysis of KiK-net boreholes

- Similar Vs30 (between 350 and 450 m/s)
- Different velocity distribution at depth
- Different site response
- Is Vs30 enough?

Vs30 = 400 +/- 5 m/s

No comments! The data speak alone

3. We need to know well the linear response (example of the CORSSA array, Greece)

Inverting for nonlinear soil properties

Mogi et al. (2010)

- Use of vertical arrays
- Inversion of G/Gmax only

Inverting for nonlinear soil properties

Assimaki et al. (2010)

Inverting for G/Gmax and damping ratio

An insight of nonlinear soil response

Gandomzadeh (2011)

Soil-structure interaction model

(a) Low-strain shear moduli of the profiles

Confining pressure dependency

An insight of nonlinear soil response

Gandomzadeh (2011)

(a) Dissipated energy

(b) Maximum shear strain

(c) Dissipated energy

What do we observe?

- Energy is strongly dissipated at the bottom of each layer and close to the free surface
- Since shear strength increases with depth, the energy is dissipated in the weaker part (transition between layers)
- Furthermore, the impedance contrast increases at each layer interface
- Thus, nonlinear response has a cumulative effect (number of cycles) and competition between impedance contrast (linear part) and material strength (nonlinear part)
- It is therefore necessary to instrument not only the middle of the layers but near their interfaces

Conclusions

Sources of uncertainty (variability) in site response

- Input ground motion (e.g. near- and far-field)
- Low strain properties (linear site response)
- Dynamic soil properties (nonlinear site response)
- Methods of computing site response

What do we need?

- Understanding linear site response
- Inverting earthquake data to obtain dynamical soil properties (up to bedrock?)
- Core sampling and laboratory tests (material strength, granulometry, pore pressure effects, etc.)
- Instrumenting middle of layers and near their interfaces