Results, 2DL, Q - TST - 0-8 Hz

Radial component

Vertical component

Good fit : (2D03), 2D04, 2D06, 2D07

Cross-model comparison, NL 0.25 g (TST)

Horizontal time histories

Response spectra

Stress-strain curves TST surface, all available computations

	Linear Viscoe-	0.05a NI	0.1a NI	0.25g, NL	
TST0	lastic, 0.1 g	0.039, NL	U. I', NL		
IRSN_VOLVI					
BRGM					
CEA_BRGM					
CEA_VOLVI					

Main results from 2D verifications

2D linear not yet straightforward

> needs iterations and cross-checks with other techniques

Key importance of damping in NL models

- > classical "Seed like" curves yield strong NL effects at least in deep deposits
 - already significant at 0.05 g (0.12 g surface)
 - ? Large effects at high frequencies because of damping ?
 - ??? Is it realistic ???

Large variability in NL results

- > Same G- ζ - γ curve implemented in different codes yield different results
 - large differences in time histories, strain / pga / pgv profiles
- > Effects on 5% response spectra less apparent
 - not so sensitive to diffracted waves
 - (but large differences between the 2 NL models)

3D Linear, Verification

Goals

- Compare 3D simulation results from different codes for various sources
- > Frequency range : 0 4 Hz (λ_{min} = 25 m)
- Identify the key issues and parameters for accurate modelling (or at least progressing in that direction...)
 - free-surface condition
 - absorbing boundary conditions
 - representation / discretization of 3D heterogeneities
 - numerical dispersion

• ...

Partners and codes

Institu-	Methods (all 2nd-order in time)						
tions	characterization		attenuation	ABC			
CUB	FDM	finite-difference, 4th-order velocity-stress volume arithmetic and harmonic averages of density and moduli arbitrary discontinuous staggered grid	GZB 4 rel. mechanisms	CPML			
UJF	SEM	spectral-element, Legendre 4th-order polynomialGZB 3 rel.Gauss-Lobatto-Legendre integrationmechanisms		Lysmer & Kuhlemeyer			
DPRI	FDM	finite-difference, 4th-order velocity-stress non-uniform staggered grid	linear Q(f) f ₀ = 2 Hz	Clayton & Engquist A1 + Cerjan			
OGS	PSM	Fourier pseudospectral, vertically stretching staggered grid	GZB 3 rel. mechanisms	CPML			
NIED	FDM	finite-difference, 4th-order velocity-stress discontinuous staggered grid	linear Q(f) f ₀ = 2 Hz	Clayton & Eng- quist A1 + Cerjan			
CEA	DEM -SEM	hybrid discrete-element – spectral element, Voronoï particles (6 dof – 3 translation + 3 rotation), 2nd-order	hysteretic damping	Lysmer & Kuhlemeyer			
CMU	FEM	finite-element, tri-linear elements, octree-based discontinuous mesh	Rayleigh att. in the bulk	Lysmer & Kuhlemeyer			
UNICE	DGM	discontinuous Galerkin, 2nd-order polynomial	n.a.	CPML			

3D Verification : How ?

Items for the cross technique comparison

> Overall patterns

- cross-sections
- PGV maps

> Individual traces : Measure of the goodness of fit

- Time-frequency analysis
- 1C 3C
- Amplitude / Phase
 - » Broad band or limited frequency bands

> identification of the origin of differences

- Plane wave / point source
- Elastic case / including damping
- smooth velocity gradients / discrete velocity jumps

Considered 3D models

ESG4, August 23-26, 2011, Santa Barbara, California

Bc/ Bd

3D heterogeneous model (3 irreg. homog. layers)								
Layer V _S (m/s)		V _P (m/s)	V _P ρ (m/s) (kg/m³)		$Q_{\mathcal{K}}$			
A+B	200	1500	2100	20	8			
C+D 350 1800		2200	35	8				
E+F	650	2500	2200	65	8			
Bedrock	2600	4500	2600	260	8			

3D heterogeneous model (3 irreg. constant-gradient layers)								
Layer	V _s (m/s)	V _P (m/s)	ρ (kg/m³)	Qs	Q_{κ}			
A+B	200 - 250	1500 - 1600	2100	20 - 25	∞			
C+D	250 - 500	1600 - 2200	2100 - 2130	25 - 50	∞			
E+F	500 - 900	2200 - 2800	2130 - 2250	50 - 90	∞			
Bedrock	2600	4500	2600	260	8			
Be/Bf ESG4 August 23-26 2011 Santa Barbara								

Bb - Elastic

Computational cases, point source

Model configurations for the hypothetical point DC source									
	sediments	bedrock							
ID	geometrical heterogeneity rheology		geometrical heterogeneity	rheology					
Ba (I2a)	n.a.	n.a.	homog.	viscoelastic					
Bb (III1)	laterally homog., elastic		1D	elastic					
Bc (I2c)	3D heterog.	elastic	40	elastic					
Bd (I2b)	(3 irreg. homog. layers)	viscoelastic	TD	viscoelastic					
Be (IV2)	3D heterog.	elastic	10	elastic					
Bf (IV1)	gradient layers)	viscoelastic	U	viscoelastic					

Available computations

Table of submitted solutions (\checkmark = under preparation)										
		CUB	UJF	DPRI	OGS	NIED	CEA	CMU	UNICE	
		FDM	SEM	FDM	PSM	FDM	DEM	FEM	DGM	
		3D01	3D02	3D03	3D04	3D05	3D06	3D07	3D09	
Bb	1D Gradient, No Q	\checkmark	\checkmark		\checkmark			\checkmark	\checkmark	3
Вс	3 homogeneous layers, No Q	\checkmark	2							
Bd	3 homogeneous layers, <mark>With Q</mark>	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark		
Be	3 irregular, constant gradient layers, No Q	~	\checkmark	5						
Bf	3 irregular, constant gradient layers, With Q	~	\checkmark		\checkmark		\checkmark	\checkmark		4

Ver 1.3 3 km 268° 45°

3D Verification 1 (Bd): 3H layers with damping

Good initial agreement only for 2 computations, improved for 2 other after iterations

Example Time histories (TST, H)

ESG4, August 23-26, 2011, Santa Barbara, California

Quantitative measure of fit using time-frequency misfit criteria (Kristekova et al., 2009)

Wavelet analysis

For each site

each component

- averaging misfit for all frequencies / all signal
- one score for envelope / amplitude
- one for phase
- \rightarrow one global score
- > average the score for the 3 components
- > 1 global score

(Can be done in different frequency bands)

Scaling and mapping

Goodness-of-fit, Detail FDM/SEM [broad-band 0-4 Hz, + narrower bands 0-1, 1-2, 2-4 Hz]

Envelope (Amplitude) fit better than phase fit Fit decreases with increasing frequency

Bd (homogeneous layers, with damping) : overall comparison (wrt 3D01-FDM)

3D Verification 2: 3H layers, NO damping (Bc)

Bc (3H layers, no damping)

3D Verification 3 (Bb): 1D gradient, no damping

ESG4, August 23-26, 2011, Santa Barbara, California