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ABSTRACT 
 
Predicting losses to infrastructure systems or portfolios of individual structures in future earthquakes requires an understanding of the 
variation in ground motion intensity that will be observed over the multiple sites at which the assets of interest are located. This spatial 
variation can be partially described by linear correlation coefficients in observed logarithmic spectral accelerations at a given pair of 
sites. That linear correlation can be further decomposed into “correlation in residuals” associated with correlated log spectral values 
(relative to predicted values) for a given earthquake, and “correlation in means” associated with trends in mean log spectral values at 
pairs of sites associated with varying earthquake magnitudes and locations of future earthquakes. These two sources can both be 
calibrated using observed earthquake data, and then combined to characterize overall spatial correlation. It will also be noted, 
however, that linear correlation is only a partial and imperfect descriptor of joint distributions of spectral values in some cases, and 
other descriptors such as conditional mean values may be more informative in some cases. Techniques to quantify this variation using 
observed strong ground motions from past earthquakes will be reviewed, and the utility of this type of analysis for probabilistic 
seismic risk assessments of spatially-distributed systems will be described. A variety of quantification and analysis approaches are 
discussed, and the relevance of each for various risk calculations is discussed.   

INTRODUCTION 

Assessment of risk to spatially distributed infrastructure is a topic of great interest in some parts of the earthquake engineering 
community. One challenge with these risk assessments is quantifying the spatial variability of ground motion intensities that will be 
experienced by the various components of the infrastructure system within a given earthquake (Lee and Kiremidjian 2007; Jayaram 
and Baker 2010), as it is known that the degree of variability can have a significant impact on predicted losses  (Adachi and 
Ellingwood 2007; Lee and Kiremidjian 2007; Park et al. 2007; Shiraki et al. 2007; Sokolov and Wenzel 2010). This spatial variability 
results from the differing distances from each considered earthquake rupture to the locations of interest, differing site conditions at 
each location, and variability due to other effects such as source heterogeneity and wave scattering that are difficult to predict in a 
deterministic manner. The variability in ground motions at any single site is considered in its probabilistic seismic hazard curve, but 
when considering large numbers of sites for infrastructure risk calculations, more work is needed to characterize spatial correlations.  

This paper will present an overview of formulations and observational data related to modeling of spatial variability of ground 
motions, using the same seismic source models and empirical ground motion prediction models used to produce current seismic 
hazard maps. Opportunities for refinements of these results using simulated ground motions and site response analyses are also briefly 
discussed. Ground motion will be characterized here by spectral acceleration at a specified period, Sa(T), although other parameters 
could be used in the same manner as long as a corresponding ground motion prediction model and spatial correlation model are 
available (e.g., Foulser-Piggott and Stafford 2011). 
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To facilitate the discussion below, we introduce new terminology for several sources of spatial correlation. For a given earthquake, 
mean values and standard deviations of logarithmic spectral acceleration are predicted by ground motion prediction models (e.g., 
Boore and Atkinson 2008), which account for attenuation of spectral accelerations with distance, as well as the effect of earthquake 
magnitude, rupture mechanism, site conditions, etc. The difference between observed lnSa’s and mean predictions is characterized by 
a prediction residual, and those residuals are seen to have a relatively stable pattern of spatial correlations in well-recorded past 
earthquakes. We term this effect correlation in residuals. When considering future ground motions at pairs of sites in a region, the size 
and location of a given future earthquake is not known with certainty, but of course both sites will experience shaking from the same 
earthquake. The commonality in earthquake magnitude, and potential similarities in source-to-site distances and site conditions at the 
pair of sites will contribute what we term a correlation in means. Overall future ground motions at pairs of sites can be characterized 
by a total correlation that includes the effect of both above sources of correlation. These terms will be defined more formally below. 
These distinctions are arguably artificial, as they are dependent upon the seismic hazard model formulation, but they are nonetheless 
useful as they decompose the problem into two pieces that can be analyzed and calibrated separately, and the two sources of 
correlation correspond approximately with separate physical phenomena. The results presented below aim to illustrate the insights that 
can be gained by looking at the problem in this way. Additionally, the results presented below show that correlation coefficients are 
only a partial and imperfect descriptor of joint behavior of spectral values at two sites, and preliminary ideas for more detailed 
descriptions are discussed. 

To illustrate the calculations proposed here, numerical results will be presented for the San Francisco Bay Area shown in Figure 1, a 
dense urban area with many seismically active faults. To illustrate calculations for specific pairs of locations, results will be shown for 
three example sites (Berkeley Hills, Milpitas and Stanford foothills) also shown in Figure 1. 

 
Figure 1. Major seismic faults in the San Francisco Bay Area, and three locations to be used in example calculations below: A – 

Berkeley, B – Stanford and C – Milpitas.(adapted from Jayaram and Baker 2010). 

EMPIRICAL PREDICTION OF STRONG GROUND MOTION 

Spatial correlations in ground motion intensity for a given earthquake can be measured empirically from well-recorded past 
earthquakes. Consider the following popular model for spectral accelerations used by empirical ground motion prediction models 
(Abrahamson and Youngs 1992; Al Atik et al. 2010)  
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 30,ln ln ( , , , ,...)ij j ij s i ij ij j jSa Sa M R V T  (1) 

where Saij is the spectral acceleration at period T for site i in earthquake j, 30,ln ( , , , ,...)j ij s iSa M R V T  is the predicted mean value of 
lnSaij, ij  is the within-event residual representing site-to-site variability in lnSaij, j  is the between-event residual representing event-
to-event variability, and  and ij j  are the standard deviations of the within-event and between event residuals, respectively. For a 
given earthquake magnitude and rupture geometry, 30,ln ( , , , ,...)j ij s iSa M R V T ,  and ij j  are deterministic values provided by the 
ground motion prediction model for every location of interest, and ij  and j  are normally distributed random variables with mean 
zero and unit standard deviation. The j  will be constant for all sites, while the ij  will vary from site to site but be correlated for 
pairs of nearby sites. For a given event, spatial correlations in lnSa across the region are thus equivalent to the spatial correlation in the 
within event residual ij . When a specific earthquake scenario is not known, however, correlations are more complex as the 

30,ln ( , , , ,...)j ij s iSa M R V T  value in particular will be unknown but spatially correlated. We examine these two sources of uncertainty 
more carefully in the following subsections. 

Correlation in Residuals 

We first consider the case of a specified earthquake and rupture geometry, where spatial correlations in the within event residual ij  
completely specifies the spatial correlation in lnSa. We term this source of correlation “correlation in residuals,” and discuss here how 
its effect can be measured empirically. 

The spatial correlations of ij  can be evaluated from dense observations of strong ground motion in past earthquakes. This is done by 
first computing ij  values for each observed ground motion. Since Saij is known for a given recording, and the other terms can be 
computed using a ground motion prediction model, equation (1) can be rearranged to solve for  ij  

 30,ln ln ( , , , ,...) /ij ij j ij s i j j ijSa Sa M R V T  (2) 

Correlations between ij  values at a given separation distance can then be estimated by pooling pairs of ij  values with that separation 
distance (within some tolerance), and computing an empirical correlation coefficient 
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where  is the estimated within-event correlation at separation distance h, ij kj h  denotes a summation over all ij  and 

kj  pairs that are separated by distance h, n is the number of such pairs,  and j  and 2

j
s  denote the sample mean and variance of all 

ij  values from the jth earthquake. These paired  values are illustrated in Figure 2a, and the resulting correlation coefficients for the 
1999 Chi-Chi, Taiwan earthquake as a function of h are illustrated in Figure 2b. A predictive equation can then be fit to the observed 
correlation coefficients, as is also shown in Figure 2b.  

The estimation approach of equation (3) assumes that correlation in ij  values between two sites is dependent only on the sites’ 
separation distance and not on other factors, allowing all observations of ij  pairs with the same separation distance to be pooled and 
used to estimate a correlation coefficient. This requires that ij  be independent of the mean predictions (i.e., any site effects, distance 
attenuation, etc. have been accounted for in 30,ln ( , , , ,...)j ij s iSa M R V T  to the extent possible). This is arguably a reasonable 
assumption, as ground motion modelers always evaluate their predictions to verify this independence, and if some dependence is 
identified then it is addressed by revising the predictive model. This also requires the source of within-even correlation to be stationary 
and isotropic; that assumption is more questionable, as the likely sources of this correlation (similar location to asperities, similar 
wave propagation paths and similar site effects) may not be stationary and isotropic, but the assumption has not yet been invalidated 
empirically (Jayaram 2010). Given this empirical reasonableness, approaches similar to that described above have been used by 
several researchers in the past to quantify these correlations (Boore et al. 2003; Wang and Takada 2005; Goda and Hong 2008; 
Jayaram and Baker 2009), and more procedural details are available in those documents.  
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(a) 

 
(b)  

Figure 2: (a) Observed within-event residuals from the 1999 Chi-Chi, Taiwan earthquake, and arrows illustrating paired observations 
at a given distance used to estimate within-event correlation at that distance. (b) Computed correlation coefficients as a function of 

separation distance, and fitted equation for predicting correlations in future earthquakes.  

Correlation in Means 

The calculations of the previous section quantify lnSa correlations for a given earthquake with known magnitude and rupture 
geometry, using prediction residuals from recorded ground motion data where the magnitude and rupture geometry are known. But the 
magnitudes and locations of future earthquakes are also random and will contribute to correlation in ground motion intensities. We can 
see this by considering equation (1), evaluated for two sites indexed as i=1 and i=2: 

 1 1 30,1 1 1ln ln ( , , , ,...)j j j s j j j jSa Sa M R V T  (4) 

 2 2 30,2 2 2ln ln ( , , , ,...)j j j s j j j jSa Sa M R V T  (5) 

The 30,ln ( , , , ,...)j ij s iSa M R V T  term will now contribute uncertainty to values of lnSaij that will be observed in future earthquakes, 
because the inputs to that function (e.g. M and R) are now random variables. In a given earthquake, the magnitude Mj will be identical 
for both sites, so that will create a source of high correlation in lnSa values at the two sites (loosely speaking, the fact that the two sites 
will both experience either a high magnitude or low magnitude in a given earthquake will tend to make the resulting lnSa values 
highly correlated). The distance values Rij will in general differ for the two sites, and the degree of difference will depend upon the 
orientation of the two sites relative to the earthquake sources, as we will study later. Finally, the Vs30 values for the sites may differ, 
although they are likely to be spatially correlated due to commonalities in geologic conditions at nearby sites (Thompson et al. 2007). 
Additional predictor parameters, such as hanging wall and foot wall terms, or depth to bedrock differ as well, but the effect of these 
terms are not discussed here or included in the notation for the sake of brevity. 

The induced correlation caused by commonality in earthquake events and in site conditions is here termed “correlation in means” as it 
manifests itself in correlation of the mean 30,ln ( , , , ,...)j ij s iSa M R V T  term when empirical ground motion prediction models are used to 
model distributions of future ground motion intensities. 

NUMERICAL RESULTS AND JOINT DISTRIBUTIONS OF SPECTRAL VALUES 

We can study the combined effect of the above two sources of spatial correlation by performing Monte Carlo simulation to generate a 
synthetic catalog of future ground motion intensities in a region. To do this, we first simulate a set of earthquake events using a 
seismic source model (the identical model used in a probabilistic seismic hazard analysis calculation), evaluating 
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30,ln ( , , , ,...)j ij s iSa M R V T ,  and ij j  for every earthquake event, simulating one j  for each event from a normal distribution, and 
simulating ij  values for each event and each site using the residual correlation model discussed above. A more detailed discussion of 
this simulation procedure is provided by, e.g., Crowley and Bommer (2006) and Jayaram and Baker (2010). 

 
(a)  

 
 
(b) 

Figure 3: Two simulations spectral acceleration values associated with M = 7.05 a rupture of Northern Hayward fault. The mean 
predicted lnSa values at each site are identical in (a) and (b), and only the ij  values vary between the two.  

This calculation is facilitated by the Event Set Calculator in the OpenSHA software package (Field et al. 2005), as this tool 
automatically computes the required 30,ln ( , , , ,...)j ij s iSa M R V T ,  and ij j  values for all specified sites in a region and for each 
earthquake scenario considered in a given source model1

ij. The user then only needs to provide simulated  and j  values to 
complete the simulation procedure used here. For the results below, this procedure was used to produce spectral acceleration 
simulations for a set of 9195 sites in the San Francisco Bay Area, using the Boore and Atkinson (2008) ground motion prediction 
model and the UCERF2 seismic source model (Field et al. 2009). Vs30 values for each of the 9195 sites were determined using 
OpenSHA’s Vs30 map server (Wald and Allen 2007). For each of these sites, 4039 Sa(1s) simulations of mean values were produced 
(corresponding to 4039 earthquake scenarios), and three sets of (spatially correlated) residuals per event were simulated using the 
above model, for a total of 12,117 simulations. Examples of two resulting maps of regional ground motion are shown in Figure 3. 

Using this catalog of simulations, Sa values at pairs of sites can be studied to evaluate their correlations. Because the Monte Carlo 
procedure produces a large suite of ground motions for each pair of sites, and because each input to the simulation procedure has been 
empirically validated, it is possible to study these results on a site-by-site basis to identify the degree of correlation implied by the 
input models to this procedure. The correlation in means is captured implicitly through the prediction of mean lnSa values for each site 
and event, and the previously calibrated correlation in residuals has been incorporated through simulation of appropriately correlated 

ij  values. 

Example data from this simulated catalog is shown in Figure 4. Observed spectral acceleration values at Berkeley and Stanford (points 
A and B in Figure 1) for an M = 7.05 rupture of the Northern Hayward fault are plotted in Figure 4a. All points in this plot thus 

                                                           
1 In the OpenSHA terminology, the ground motion prediction model is termed an Intensity Measure Relationship, and the source 
model is termed an Earthquake Rupture Forecast.  
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correspond to fixed values of Mj, Rij, etc.  in equations (4) and (5), and only the ij  values vary2

ij

. In this case, because the two sites are 
approximately 50 km apart, the  values are effectively uncorrelated at this large separation distance based on the empirical model 
for correlation in residuals shown in Figure 2b. Figure 4b shows spectral values for the same two sites, but now considering all 12,117 
events in the synthetic catalog. Here we see that, even though the correlation in residuals is effectively zero for these two sites, the 
correlation in means contributes to produce a strong overall correlation in spectral values at these two sites. Qualitatively speaking, the 
data in the upper right corner come from very large earthquakes that will produce strong shaking throughout the region, and the data in 
the lower left corner come from small earthquakes that do not produce strong shaking. Note that the simulated events were produced 
using an importance sampling procedure that preferentially simulates the large earthquakes of interest for risk assessment, and then 
applies weights to each simulation to correct for this preferential sampling. The points plotted in Figure 4b are thus not all equally 
weighted and so visual inspection does not provide a perfect representation of the relative frequency of observing spectral values of 
given amplitudes, but qualitative visual inspections still provide reasonable interpretations. 

 
(a)   

 
(b)  

Figure 4: (a) Simulated one-second spectral acceleration values at Berkeley and Stanford, given an M = 7.05 rupture of the Northern 
Hayward segment.(b) Simulated one-second spectral acceleration values at Berkeley and Stanford, considering all events in the 

synthetic catalog.  

For the case of logarithmic spectral accelerations conditional on an event, the joint distribution of lnSa’s are seen to be well-described 
by a joint Gaussian distribution (Jayaram and Baker 2009), so a correlation coefficient is sufficient to completely describe the joint 
distribution of intensities. Once random earthquake sources are considered, however, this model is no longer valid in general, as non-
Gaussian distributions of earthquake magnitudes and distances, and nonlinear functional forms in the ln ( , , ,...)j ijSa M R T  will in 
general lead to non-Gaussianity of the resulting lnSa values. This is apparent in Figure 4b, where the simulated lnSa values do not fall 
in elliptical shapes that would suggest joint Gaussian distributions. In particular, the large Hayward events produce disproportionally 
large lnSa values in Berkeley relative to Stanford, and large San Andreas events do the reverse (the Hayward events are plotted in a 
different style in Figure 4b to illustrate this effect). The non-Gaussianity of the joint distribution means that a linear correlation 
coefficient is an imperfect descriptor of the joint behavior of the lnSa values at a given pair of sites. 

The potential inadequacy of linear correlation coefficients can also be seen in Figure 5a, which shows the correlation coefficients of 
lnSa values at Berkeley with all other sites in the region (for reference, the correlation coefficient of the data in Figure 4b is 0.65, and 
that value is plotted at the location of Stanford in Figure 5a). Also shown in Figure 5b-d are mean values of lnSa throughout the 
region, conditional on Sa(1s) values at Berkeley of 0.22g, 0.7g, and 1.2g, respectively. These are the amplitudes exceeded at Berkeley 
with 50%, 10% and 2% probabilities in 50 years, respectively. These maps are obtained by finding all simulations in the synthetic 
catalog with Sa values equal to the target amplitude at Berkeley (within some small tolerance), and taking the mean values of the 
simulated lnSa’s at each other site in the region. The three conditional mean values at the Stanford site are noted in Figure 4b above. 
                                                           
2 Extra ij  values for this event and pair of sites have been simulated to illustrate this joint behavior in more detail, but the main 

synthetic catalog only has three such pairs of spectral values for this particular earthquake event 
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Figure 5: Measures of joint characteristics of ground motions at Berkeley (labeled as point “A” on the figures) and other locations 
throughout the San Francisco Bay Area (a) Correlation of lnSa values between Berkeley and other locations, (b) Conditional mean 

lnSa(1s) values given SaA(1s)=0.22g, (c) Conditional mean lnSa(1s) values given SaA(1s)=0.7g, (d) Conditional mean lnSa(1s) values 
given SaA(1s)=1.2.  

Several observations can be made from these figures. It is notable that correlation coefficients decay as you move away from the 
conditioning site in a manner that is dependent almost exclusively on distance, as indicated by the approximately concentric circles of 
equal correlation. This is similar to the way in which correlation in residuals decay (although here the decay is slower due to the added 
effect of correlation in means). In contrast, the conditional mean values show additional structure, with elevated mean values tracing 
out regions along the Hayward fault, and also being present at sites with low Vs30 values. The difference between the two cases 
suggests that correlation coefficients are insufficient to characterize the joint behavior of spectral values at pairs of sites, indicating 
non-Gaussianity of the data (if the lnSa values were Gaussian, then plots of correlation and conditional means would be nearly 
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identical, with the only differences being due to variation in marginal mean values of lnSa from site to site). This is not surprising, 
given Figure 4b, which shows non-Gaussian behavior in the joint distribution of lnSa values at sites A and B. There are other cases, 
however, where perhaps joint Gaussian behavior is a reasonable model for lnSa distributions. Figure 6 shows lnSa values from the 
stochastic catalog for sites A and C (Berkeley and Milpitas), and the lnSa values here lie in more approximately elliptical patterns, 
which could be represented by contours of a Gaussian distribution. 

To quantify our comparisons of these two cases, we can note that the Stanford and Milpitas sites are both 50 km away from Berkeley. 
The total correlation coefficient between Berkeley and Stanford is 0.65, while the correlation between Berkeley and Milpitas is 0.71, 
corresponding to our observation in Figure 5a that correlation coefficients are approximately constant at a given separation distance 
from Berkeley. On the other hand, the exponential of the mean lnSa values at the two sites conditional on Sa at Berkeley equal to 1.2g 
are more dramatically different: 0.12g at Stanford and 0.38g at Milpitas. The more approximate Gaussianity of the Berkeley and 
Milpitas pair, and the higher conditional mean lnSa values at Milpitas, are due to Berkeley and Milpitas both having high-Sa ground 
motions coming from Hayward Fault earthquakes, while the Stanford site has high-Sa values that come from San Andreas Fault 
earthquakes (as expected from inspection of Figure 1, and confirmed from seismic hazard analysis deaggregation at each site). This 
suggests that when pairs of sites have hazard dominated by a common seismic source, that simple models for joint distributions of Sa 
values may be realistic and simple to calibrate, while if the pairs of sites have hazard driven by differing sources, the picture is more 
complicated. Ongoing work aims to quantify these results in a form that will facilitate decision making without requiring the extensive 
simulations performed here. 

 
Figure 6: Simulated one-second spectral acceleration values for Berkeley and Milpitas, considering all events in the synthetic catalog.  

REGIONAL VARIATION OF CORRELATIONS 

We have seen from the above examples comparing two pairs of sites that the joint distribution of spectral values depends upon 
orientation of faults relative to the sites of interest, rather than simply separation distance between the pair of sites. This implies that 
trends in spatial correlation of lnSa values will vary from region to region, since fault structures and geometries will vary from region 
to region.  

To illustrate, Figure 7a shows correlation coefficients in lnSa values from pairs of locations, plotted versus their separation distance. 
These are the same data shown in Figure 5a. There is variation in measured correlation at a given separation distance, due to variation 
in site conditions and proximities to faults among the various pairs of sites shown here. To discern a general trend in these data, the 
mean value of correlation at a given distance is estimated using a moving-average fit, and is also shown in Figure 7a. A comparable 
synthetic catalog of lnSa(1s) values was then produced for the Los Angeles basin region, and correlation coefficients in those data 
were computed versus distance. The mean correlation versus distance in Los Angeles is compared to the comparable result from San 
Francisco in Figure 7b. It is seen that correlations in Los Angeles tend to be lower, presumably because the San Andreas and Hayward 
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faults are the dominant sources of seismic hazard in the San Francisco Area, and they extend long distances, meaning that high Sa 
values at distant sites may occur in the same earthquake. Los Angeles, in constrast, has major contributions to hazard from local thrust 
faults that may not extend over as great of lengths, thus reducing the correlation in means in that region. The differences in 
correlations may or may not be important, depending upon the application of interest; it is also worth recalling that linear correlation is 
an imperfect measure of joint distributions of lnSa values in many cases, so more work is needed to fully understand the patterns we 
are interested in. Identification of improved metrics for capturing these joint distributions is a topic of ongoing work. Also shown in 
Figure 7b for reference is the model for correlation in residuals from Figure 2b, showing that the correlation in means greatly increases 
overall correlations relative the consideration of only correlation in residuals. 

 
Figure 7: (a) Correlations in one-second log spectral accelerations at pairs of locations with a specified separation distance for the 
San Francisco Bay Area, and the mean trend in correlations obtained from a moving average fit. (b) Mean trend in correlations with 

distance from the San Francisco Bay Area (from a) compared with mean correlations from the Los Angeles area, and the residual 
correlations model of Figure 2b. 

INFLUENCE OF SITE CONDITIONS 

Surface geology plays an important role in strong ground motion, and it plays an important role in these spatial correlation results as 
well. This effect can be seen in several ways. While the correlation in residuals measured from past earthquakes does not appear to 
vary strongly across regions or with earthquake magnitude, Jayaram and Baker (2009) did note a potential dependence on Vs30 
heterogeneity in the region being studied, with strongly varying Vs30 indicating lower correlation in residuals. This was speculated to 
be due to two effects. First, Vs30 is understood to be an imperfect predictor of the effect of near-surface geology on ground motion, and 
when Vs30 is strongly varying spatially, this is likely to be a proxy for strongly varying geology and thus variations in ground motion 
that are not well explained by the ground motion prediction model, leading to lower correlations in residuals. Second, when Vs30 
values are inferred, they vary less across a region than when they are directly measured. These inferred Vs30 values are likely to be 
imperfect estimates, and likely introduce a (spatially correlated) error in ground motion predictions, leading to spatially correlated 
residuals. Thus inferred site conditions are likely to be associated with homogeneous Vs30 values and greater correlation in residuals 
(Jayaram and Baker 2009). 

In addition to correlation in residuals, varying site conditions produce a correlation in means, as can be understood from inspection of 
equations (4) and (5). When the two sites of interest have the same near surface geology, they will have the same Vs30 value and thus 
the site conditions will have the same effect on predicted mean lnSa values. When the sites have difference near surface geology, the 
effect of Vs30 on predicted mean values will differ between the two sites, and to the extent that the site condition term in the predictive 
model is nonlinear as a function of ground motion intensity, the ground motions at the two sites will differ across the various events 
considered. The same effect, to a lesser extent, will occur from other site-related terms (such as depth to bedrock) that might be 
present in the predictive models. The role of this effect is seen in Figure 8, which shows conditional mean values of lnSa, given Sa at 
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Berkeley = 1.2g. In Figure 8a, best estimates of site Vs30 are used for each site in the region (this figure is identical to Figure 5d). 
Figure 8b shows the same result (mean values of lnSa, given Sa at Berkeley = 1.2g), but using a constant value of Vs30=698 m/s for all 
sites (the value at the Berkeley Hills site used for conditioning, so that the hazard at that site is identical in both cases). The difference 
between these two cases indicates quantitatively the qualitatively-intuitive impact that varying site conditions have on this joint 
behavior.  

 
Figure 8: (a) Conditional mean lnSa(1s) values given SaA(1s)=1.2g, including site-specific Vs30 values. (a) Conditional mean 

lnSa(1s) values given SaA(1s)=1.2g, using a constant Vs30=698 m/s value for all sites.  

Note that these results only account for site conditions to the extent that the Vs30-related component of the ground motion prediction 
model accounts for the true effect of site conditions on ground motion. This is admittedly an imperfect treatment of site effects, but is 
likely the only practical approach available at the moment. Potentially superior alternatives include estimation of site-specific site 
response factors for use with the ground motion prediction model (Baturay and Stewart 2003; Bazzurro and Cornell 2004), or use of  
simulated ground motions that account for near-surface site-effects (Li et al. 2011). The former approach may be impractical when 
considering large numbers of sites, and the latter requires the modeling of nonlinear near-surface effects that are not yet commonly 
considered in many physics-based simulation approaches. These improved options will likely become more feasible, however, in the 
near future.  

ROLE OF SIMULATED GROUND MOTIONS  

The above analysis was all performed in the context of empirical ground motion prediction models. An active research area at the 
moment is in the use of numerically simulated ground motions to replace such empirical models in seismic hazard analysis (Graves et 
al. 2010). Those simulations could be used to perform similar calculations to these, by stochastically simulating earthquake ruptures 
(including detailed source models necessary for the simulations), and then computing resulting ground motions at each location of 
interest. By repeating this process over a large number of earthquake ruptures, a stochastic catalog like that used above could be 
produced. With this approach, the distinction between correlation in residuals and correlation in means would not exist, and while the 
simulations would require careful validation, the resulting catalog could be used to help evaluate the validity of the empirical-based 
formulation above. This simulation-based approach would potentially allow for the study of the effect of topography, Vs30, directivity, 
etc. on correlations, since these effects can in principle be accounted for in simulations but are not as well constrained by the empirical 
ground motion prediction models used above.  
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Despite the potential of this approach, producing the required stochastic catalog is a notably non-trivial task. These calculations 
require the simulations to be performed for many or all possible earthquake scenarios in a region, rather than just a single scenario 
rupture; this would necessitate not only having a source model for the region, but also being able to randomize, e.g., slip distributions 
for a given rupture extent. Such efforts are taking place (Graves et al. 2010), and despite the considerable effort required to produce 
such data, this type of modeling will eventually facilitate a greatly improved understanding of spatial variation of ground motions.  

While ground motion simulations have the potential to improve understanding of this problem, conversely the empirical-based 
formulation above also offers some insights to ground motion simulators. First, the comparison of correlations from recordings and 
simulations does serve as an interesting validation of simulations (Jayaram et al. 2010), as within-event correlations appear to be 
relatively stable across earthquake magnitudes, at least within active tectonic regions. This suggests that evaluating within-event 
correlations is one possible way to validate ground motion simulations. Second, it will be harder to study regional variations in spatial 
variation using simulations, due to non-uniform quality of the required detailed source models and crustal velocity models across 
regions at the moment. However, as those needed inputs improve for a greater range of regions, comparisons with empirical-based 
results may provide a useful validation point.  

CONCLUSIONS 

Spatial variation in ground motion spectral accelerations is an important property for assessing seismic risk at a regional scale, but has 
received relatively less attention than the distribution of ground motion intensity at single sites. Several results have been presented to 
demonstrate how joint distributions in Sa values at pairs of sites can be quantified in the context of empirical ground motion prediction 
by studying correlations in spectral acceleration residuals (which can be estimated from strong motion data), and correlation in mean 
lnSa predictions (which are implicitly defined by seismic source models and ground motion prediction models). Both of these terms 
are empirically calibrated, and most of this information is already used in standard single-site probabilistic seismic hazard analysis. 
Correlations in residuals as a function of distance appear to be relatively consistent across the set of well-recorded earthquakes for 
which such calculations can be performed (since most clear predictors of ground motion variability are already accounted for in the 
ground motion prediction model), while the correlations in means will vary by region, as they will depend upon the geometry of 
earthquake ruptures and the number of earthquake sources in the region. Variations in site conditions across a region also play an 
important role in these spatial correlations. It is observed that non-negligible correlations in residuals exist in sites that are separated 
by up to approximately 25 km, and that non-negligible correlations in total Sa’s exist at separation distances of 100 km or more, 
depending upon the seismic source model for the region. These variations have implications for prediction of infrastructure disruption 
and insured losses to portfolios of buildings. Analysis results of the type shown here will also help facility owners deciding on the 
placement of redundant facilities and infrastructure agencies planning to mitigate system-wide damage. Looking forward, 
advancements in modeling the effect of site conditions on ground motions, and in physics-based ground motion simulation and hazard 
analysis, will improve our ability to understand and predict joint dependence of spectral accelerations at multiple sites, leading to even 
greater benefits for these stakeholders. 
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