Is VS30 an Effective Parameter for Site Characterization?

Norm Abrahamson PG&E

Before VS30

- Generic Site Categories Used in Western U.S. GMPEs
 - Soft soil
 - Requires special consideration
 - Soil
 - Deep soil excluding soft-soil
 - Rock
 - Not deep soil
 - Sometimes separated into hard-rock and soft-rock

VS30

- VS30 is not the fundamental physical parameter.
 - Index of the velocity profile
- Provides a quantitative parameterization of site
 - Less subjective than site categories
 - Provides a smooth transition between site categories
- For typical strong motion sites in California, VS30 correlated with deeper Vs profile
 - Most soil sites are in alluvial basins (deep soils)
 - Need soil depth for shallow soil sites

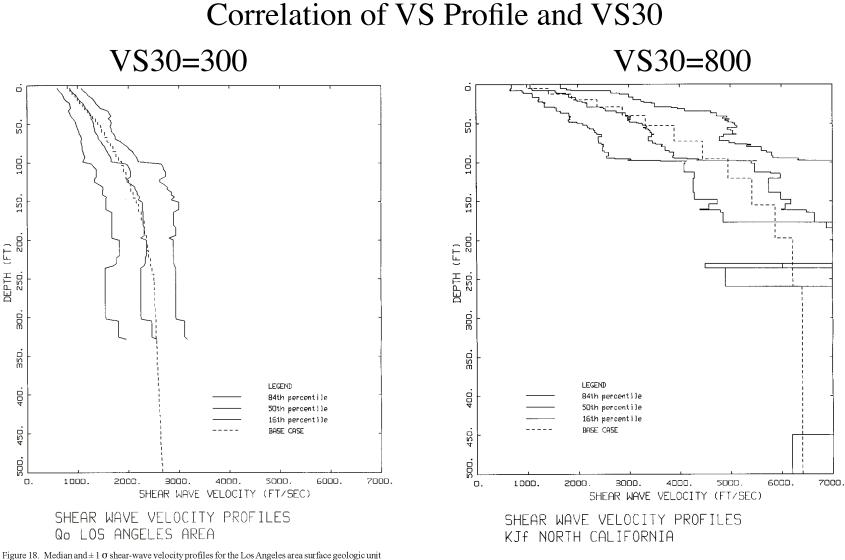
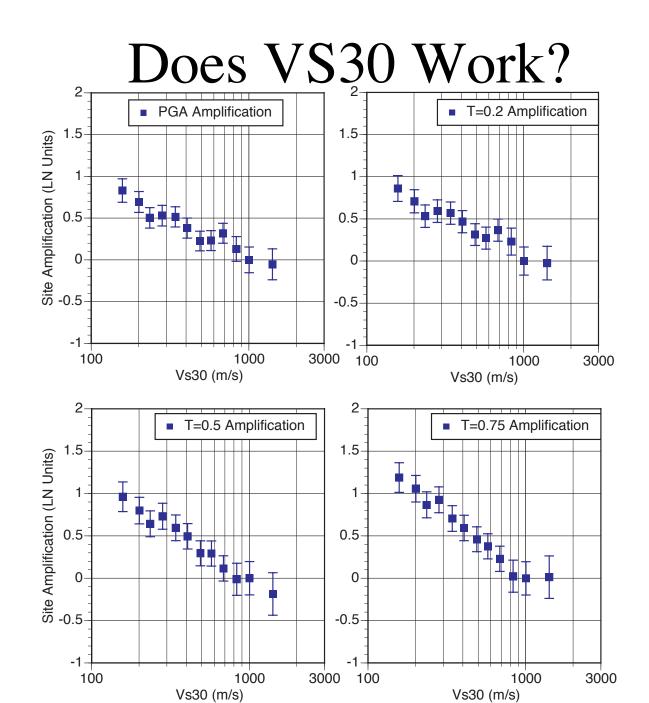
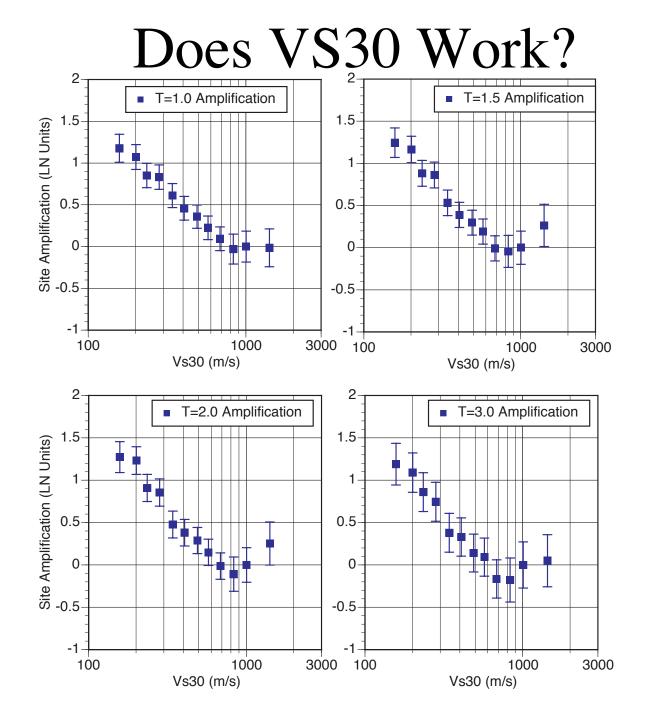
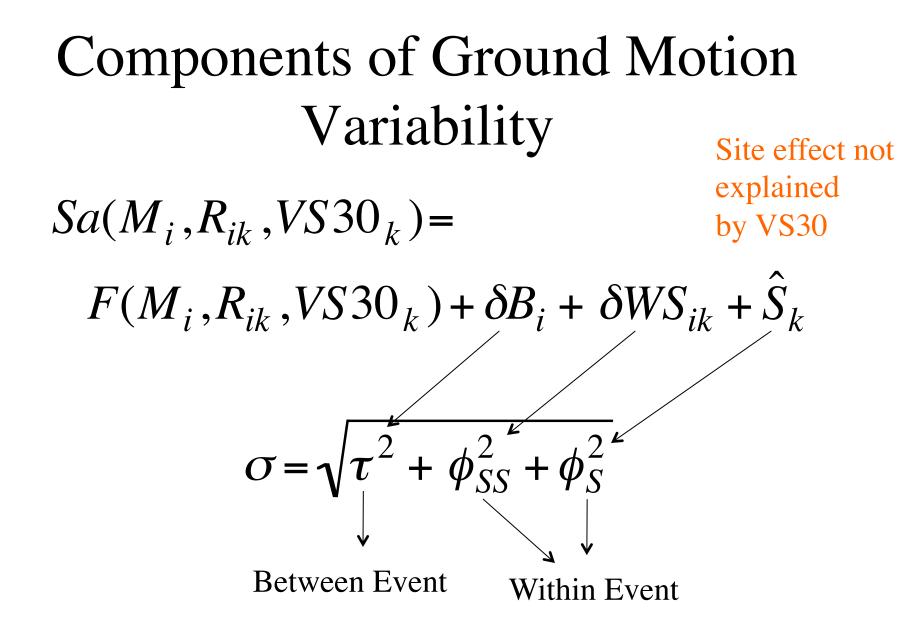




Figure 18. Median and $\pm 1 \sigma$ shear-wave velocity profiles for the Los Angeles area surface geologic unit Q_{as} Older Alluvium (Table 1).

Figure 9. Median and \pm 1 σ shear-wave velocity profiles for the San Francisco Bay area surface geologic unit K_{ib} Franciscan(Table 1).


Does VS30 Work?

- Short periods
 - V_{S30} captures general site amplification for soil and soft-rock sites
 - Extrapolating V_{s30} scaling to hard-rock sites may not work
 - Does not capture effects of kappa
 - Most GMPEs put an upper limit on the VS30 used (1000-1500 m/s)
- Long periods
 - V_{S30} captures general amplification for soil sites
 - V_{S30} is not correlated with long period amplification for rock sites

How Well Does VS30 Work?

- At long periods, explains factor of 2-3 differences between soil and rock sites
- Look at the remaining variability of the site response after using VS30

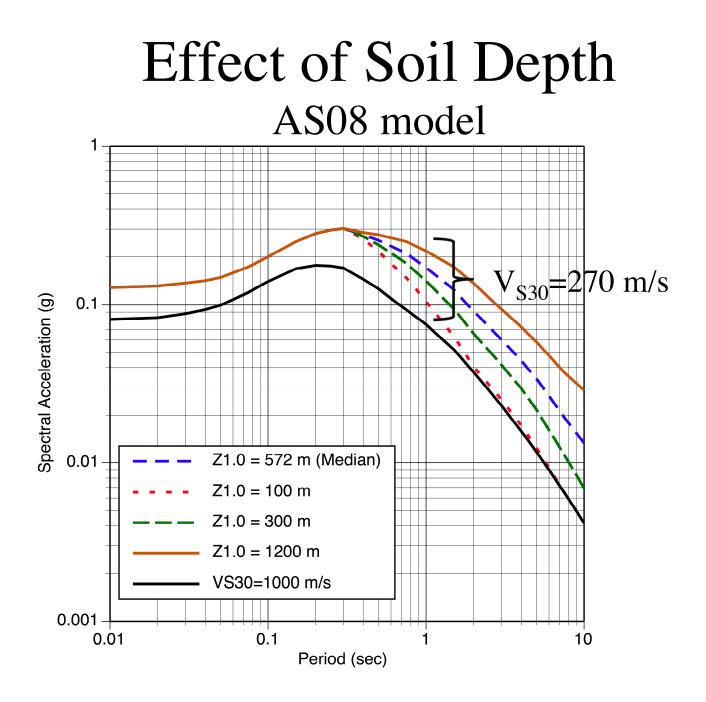
Components of variability

Components of Variability from Taiwan Data

	σ	τ	φ _s	ϕ_{SS}
PGA	0.68	0.41	0.28	0.47
T=0.1	0.76	0.44	0.36	0.50
T=0.3	0.69	0.38	0.30	0.49
T=0.5	0.70	0.42	0.32	0.47
T=1.0	0.74	0.47	0.38	0.43
T=3.0	0.85	0.59	0.43	0.42

LN units

(From Lin et al, 2011)


Comparison of ϕ_S based on V_{S30}

	California	Taiwan	
PGA	0.44	0.28	
T=0.1		0.36	
T=0.3	0.46	0.30	
T=0.5		0.32	
T=1.0	0.42	0.38	
T=3.0		0.43	

LN units

Beyond VS30

- Add soil depth (2 parameters to VS profile)
 Allows separation of shallow and deep soil sites
- Add Kappa
 - Allows extrapolation of VS30 scaling to hardrock sites
 - Only inputs the high frequencies (> 10 Hz)
- Add site period
 - Difficult, sites may have more than one site period (shallow and deep parts of the profile)

Plan for Update of AS08 NGA (NGA-west2)

- In addition to VS30:
 - Soil depth (depth to VS=1 km/s)
 - Kappa
- Difficulty in estimating additional parameters
 - Default values will be provided if additional parameters are not known.

Use and Misuse of VS30

- Intended Use of VS30 in NGA models
 - Clear hand-off between ground motion and site response for definition of the input motions
 - Consistent definition of "rock" or input motion
 - VS30 used in the GMPE should be for the 30 m below the level of the input motion
 - Use for deep soil sites that have typical profiles
 - e.g deep soil site in LA basin
- Misuse
 - Replace site-specific analysis (for sites with profiles not typical as contained in GM data base)
 - VS30 was never intended to provide a site-specific site amplification

Conclusions

- V_{S30} remains a useful parameter for general site classification
 - Better than the old categories of soil and rock
 - Less ambiguous
 - Avoids jumps in ground motion from one category to the next)
 - Allows for defining motion for the appropriate layer for the input motion
 - I have not seen an other single parameter that works better

Conclusions (cont)

- Additional site parameters can be added to GMPEs
- Should address common conditions with large effects
 - Shallow soils (not deep alluvial basins)
 - Depth to rock
 - Hard rock conditions (e.g. EUS)
 - Kappa
- Adding a few additional site parameters will not replace site-specific response
 - In my opinion, it is a mistake to try to build detailed site-specific effects into GMPEs
 - This should be handled by site-specific analysis

Comparison of ϕ_S based on V_{S30}

	California	Japan	Taiwan	
PGA	0.44	0.43	0.28	
T=0.1		0.53	0.36	
T=0.3	0.46	0.47	0.30	
T=0.5		0.43	0.32	
T=1.0	0.42	0.38	0.38	
T=3.0			0.43	